Всё страньше и страньше. Как теория относительности, рок-н-ролл и научная фантастика определили XX век - Мезин Николай страница 5.

Шрифт
Фон

Представьте себе самый далекий, темный и пустой участок космоса, какой только есть,  вдали от звезд, планет и любого внешнего влияния. Теперь представьте, что вы парите в этой полной пустоте, от которой вас защищает теплый и уютный скафандр. Важно, чтобы вы представили себя висящим неподвижно.

Затем представьте, как мимо вас медленно проплывает, исчезая вдали, чашка чая.

Вроде бы вполне возможная ситуация. Первый закон Ньютона гласит, что тело, на которое не действует никакая внешняя сила, остается в покое или движется по прямой с постоянной скоростью. Кажется, он идеально описывает происходящее и с вами, и с чашкой.

Но как понять, что вы находитесь в покое, спросил бы Эйнштейн. Откуда мы знаем, что не чашка стоит на месте и не вы пролетаете мимо нее? С вашей точки зрения оба сценария будут выглядеть одинаково. И ровно так же одинаково с точки зрения чашки.

В 1630-х годах Галилею говорили: невозможно, чтобы Земля вращалась вокруг Солнца, потому что люди на Земле не чувствуют движения. Но Галилей знал, что если движешься ровно, без ускорения или замедления, и нет никаких визуальных или акустических показателей движения, то понять, что ты движешься, невозможно. Никто не может быть уверен, что «неподвижен», утверждал Галилей, поскольку разница между движением и покоем незаметна без тех или иных внешних ориентиров, с которыми можно сравнить свое положение.

Это может показаться каким-то софизмом. Разумеется, можете подумать вы, объект или движется, или неподвижен, даже если рядом нет ничего. Для кого утверждение «Я стою на месте» может выглядеть абсурдом или бессмыслицей?

В школе нас учат определять положение объектов с помощью системы координат, показывающей удаление предмета от некой фиксированной точки по высоте, длине и глубине. Эти измерения называются осями x, y и z, а фиксированную точку обычно помечают буквой O, от слова origin (начало). Это тоже омфал, от которого отмеряются все расстояния. Эта модель именуется декартовой системой координат. В ней вы легко поймете, движутся ли астронавт и чашка чая, просто отследив, меняются ли со временем значения их координат.

Но если бы вы показали такой чертеж Эйнштейну, он взял бы ластик и первым делом стер «О», а потом уж заодно и все три оси.

Этим он убрал бы не «пространство», а только систему ориентиров, которой мы пользовались, чтобы это пространство измерить. И он сделал бы так потому, что в реальном мире этой системы координат нет. Декартовы оси такое же творение человеческого ума, как и разбегающиеся от Гринвича линии долготы, и мы проецируем эти модели на мироздание, чтобы как-то его описать. Эти сущности мнимы. Более того, они произвольны. Центр такой системы координат можно расположить где угодно.

Инстинктивно мы чувствуем, что движение астронавта или чашки должно замечаться на каком-то определенном «фоне». Но если это так, что может выполнять его функцию?

В нашей повседневной жизни твердая почва под ногами служит нам ориентиром, к которому мы неосознанно привязываем всё. Существование такой понятной и незыблемой отправной точки мешает нам представить ситуацию, когда ничего подобного нет. Но насколько незыблема земля? Теория тектонических плит, получившая признание в 1960-х, научила нас, что континенты медленно дрейфуют. Так что, если мы ищем неподвижную точку, под ногами ее не найти.

Может быть, сориентируемся по точке в центре нашей планеты? Она тоже не статична, потому что Земля летит вокруг Солнца со скоростью более 100 000 километров в час. Тогда, может, зацепимся за Солнце? Оно мчит со скоростью 220 километров в секунду вокруг центра нашей Галактики. Галактика, в свою очередь, несется на 552 километрах в секунду относительно остальной Вселенной.

Ну а что же собственно Вселенная? В последней отчаянной и уже радикальной попытке найти точку неподвижности не объявить ли нам омфалом центр Вселенной? Ответ тот же: нет. Центра Вселенной, как мы увидим далее, вовсе не существует, а пока мы отвергнем эту идею из-за ее полнейшей неосуществимости.

Но как тогда положительно утверждать что-либо о положении астронавта (нас) и чашки? Пусть «неподвижной точки», которую можно взять за ориентир, не существует, но у нас ведь еще есть координатные модели, и мы можем прикладывать их где хотим. Например, если мы нарисуем сетку с центром в нас самих, то сможем сказать, что чашка движется относительно нас. А если поместим в центр координат чашку, получится, что это мы движемся относительно чашки. Но мы не можем утверждать, что одна из моделей правильная или в чем-то лучше другой. Сказать, что чашка проплывает мимо нас, значило бы лишь обнаружить свое врожденное предубеждение к чайным чашкам.

В книге Эйнштейна «Относительность» 1917 года есть хороший пример, поясняющий, почему ни одна система координат не важнее любой другой. В оригинальном немецком издании автор упоминает в качестве точки отсчета берлинскую Потсдамскую площадь. В английском переводе ее заменили на Трафальгарскую. К тому моменту, когда книга превратилась в общественное достояние и в интернете появилась ее цифровая копия, площадь превратилась в нью-йоркскую Таймс-сквер, потому что редактор именно ее считал «самым известным и узнаваемым местом для англоязычного читателя наших дней». Иначе говоря, о точке отчета важно знать то, что она устанавливается произвольно. В общем-то, она может быть где угодно.

Посему первый шаг к пониманию относительности таков: нужно принять, что любые утверждения о расположении объекта имеют смысл лишь тогда, когда оно определяется вместе с системой координат. Систему мы можем выбрать любую, но не можем говорить, что она правильнее остальных.

С этим пониманием мы вернемся в Цюрих 1914 года.

Эйнштейн садится в поезд в Цюрихе и отправляется в Берлин. Он покидает жену Милеву и двух детей, уезжая в новую жизнь, к собственной кузине, с которой позже сочетается браком. Представим себе, что поезд движется по прямой с постоянной скоростью 100 км/ч и что в какой-то момент этой поездки Эйнштейн поднимается на ноги, вытягивает вперед руку и бросает на пол сосиску.

Отсюда возникает два вопроса: как далеко упадет сосиска и почему он бросил свою жену? Сам Эйнштейн счел бы более увлекательным первый вопрос, так что на нем мы и остановимся.

Предположим, он поднял сосиску на высоту 1,5 метра над полом вагона. Она падает, как можно ожидать, к его обшарпанным ботинкам, строго под вытянутой рукой. Можно заключить, что сосиска пролетела точно полтора метра. Как мы только что видели, подобные утверждения имеют смысл, только когда мы договорились о системе координат. Здесь мы выберем систему координат Эйнштейна интерьер вагона, и относительно нее сосиска пролетает полтора метра.

Можем ли мы избрать другую систему координат? Представим, что между рельсов сидит мышь и поезд как раз проносится над ее головой, когда Эйнштейн роняет свою сосиску. Какое расстояние пролетит сосиска, если мы примем за точку отсчета эту мышь?

Сосиска по-прежнему падает из руки Эйнштейна и приземляется у его ног. Но для мыши и Эйнштейн, и сосиска еще и проезжают мимо. За время от момента, когда Эйнштейн ее бросил, до момента, когда она коснулась пола, сосиска проехала какое-то расстояние по рельсам. Точка, где располагаются ноги Эйнштейна в момент, когда сосиска касается пола, находится дальше по дороге, чем точка, где располагалась его рука в момент, когда он бросил сосиску. Сосиска по-прежнему летит на полтора метра вниз, с точки зрения мыши, но, кроме того, она пролетает какое-то расстояние в направлении движения поезда. Если нам вздумается измерить расстояние, которое сосиска пролетает между рукой и полом с точки зрения мыши, траектория полета будет не вертикалью, а наклонной линией, а значит, сосиска пролетит больше полутора метров.

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке