Необходимо также иметь в виду, что получить полностью объективные данные практически невозможно. Таким образом, маркировка данных в качестве «объективных» или «необработанных» может быть вредной, поскольку она явно игнорирует потенциальную предвзятость данных. Одинаково сложно создать объективный алгоритм машинного обучения, с помощью которого можно обрабатывать данные, ранжировать граждан, а также определять, как алгоритм будет реагировать на новые данные. Ясно, что предвзятость может быть смягчена, но для этого ее существование требуется признать, что нехарактерно для Китая[27].
При этом при анализе больших данных некое пренебрежение к необходимости смягчения предвзятости данных может явиться причиной дискриминационных действий, например предиктивной полицейской деятельности. На микроуровне «подозрительные» корреляции, основанные на прогнозах больших данных, могут быть использованы против отдельных лиц, например, невозможность зачисления детей в частную школу из-за низкого социального рейтинга их родителей (что само по себе является одним из примеров косвенной дискриминации в отношении детей). Однако предвидение рисков не работает на индивидуальном уровне, и такая предиктивная полицейская деятельность, скорее всего, будет представлять собой нарушение права на равенство перед законом. В свою очередь на макроуровне система социального кредита может информировать правительство о тенденциях, общественном мнении и возможных проблемах в обществе, что может помочь правительству в прогнозировании социального контроля и выработке политической стратегии[28].
Приведенный нами обзор касательно китайского варианта обработки данных приводит к выводу о том, что его реализация в Российской Федерации невозможна ввиду очевидного конфликта с правами человека, признанными в подписанных Россией (в отличие от Китая) международных актах и имплементированных в гл. 2 российской Конституции, а также распространившихся в отраслевых актах законодательства.
Проанализированные нами в рамках основного исследования зарубежные (американские и европейские) и российские подходы к обеспечению фундаментальных прав человека при обработке данных в государственном управлении можно систематизировать по нескольким направлениям.
1.1. Правовое регулирование использования алгоритмов для обработки данных в государственном управлении
Алгоритм является базовым понятием в проблематике автоматизированной обработки данных. Начнем с того, что алгоритмы существовали задолго до того, как получили свое наименование. Они порождены необходимостью находить быстрые и эффективные решения посредством трансформации данных при помощи точных указаний, применяющихся поэтапно. В принципе обычный кулинарный рецепт это уже алгоритм, который содержит пошаговую инструкцию для достижения определенного результата. Правовая норма тоже алгоритм, содержащий набор данных, условий их применения в заданной последовательности также для достижения некоего результата (решения определенной проблемы). Выходит, право и алгоритм крайне близки по сути. Если отталкиваться от классических определений право как система норм, регулирующих отношения между людьми в обществе, и алгоритм как совокупность инструкций, разрешающих проблему, то понятие алгоритма оказывается более широким. В этом смысле право можно рассматривать как специфический алгоритм (юридический), объединяющий совокупность инструкций, разрешающих проблемы, возникающие из отношений людей в обществе[29].
Но развитие информационных технологий, успех науки информатики прочно связали понятие алгоритма с информационным обеспечением. Поэтому, произнося слово «алгоритм», мы переносимся в область программирования.
Оксфордский словарь английского языка определяет алгоритм как процесс или набор правил, которым необходимо следовать при осуществлении вычислений или других операций, связанных с решением задач, как правило, с помощью компьютера[30]. В настоящее время под алгоритмом обычно понимают либо фрагмент кода, либо компьютерное приложение, которое может быть использовано в целях оказания содействия человеку в процессе принятия решений или для выполнения действий, не требующих его непосредственного участия[31]. Так, алгоритмы уже используются при вынесении приговоров и принятии решений об условно-досрочном освобождении; для прогнозирования «мест притяжения» криминальной активности в целях содействия органам правопорядка и рационального распределения ресурсов; при персонализации результатов поиска, электронных новостных лент и рекламы; для выявления мошенничества; определения кредитных рейтингов; облегчения набора персонала, а также оказания медицинских и юридических услуг и др. Используются алгоритмы и в сфере государственного управления. В этом смысле особого внимания требуют алгоритмы, которые применяются для поддержки принятия решений. Некоторые из наиболее известных примеров использования алгоритмов связаны с процессом принятия решений, что непосредственно оказывает воздействие на права человека. Один из наиболее часто приводимых примеров в связи с этим использование алгоритмов для оценки степени риска при вынесении приговоров, учитывая, что такая оценка может иметь прямое отношение к праву человека на свободу и запрету дискриминации[32]. Подобный кейс будет рассмотрен нами ниже.
Доступность алгоритмов в совокупности с использованием оценки степени риска потенциально может повлиять на права человека, особенно в отношении тех, кто находится в уязвимом положении в ключевых областях жизни (пища, жилище, занятость). Прогнозная аналитика может применяться и для защиты детей. Например, London Council в сотрудничестве с частными поставщиками услуг использует алгоритмы, объединяя данные нескольких агентств, и применяет риск-ориентированный подход для определения вероятности жестокого обращения с ребенком или отсутствия заботы о нем. Сказанное вызывает к жизни вопросы конфиденциальности и защиты данных, а также вопросы, связанные с правом на уважение частной и семейной жизни и дискриминацией. В связи с этим прежде всего необходимо определить, можно ли использовать алгоритм для принятия решений или для содействия в его принятии, если речь идет о конкретной жизненной ситуации. Алгоритмы, управляющие большими данными, искусственный интеллект или алгоритмы машинного обучения обычно работают на основе корреляции и статистической вероятности. Однако природа таких алгоритмов, с одной стороны, заключается в генерации результатов, которые описывают поведение группы, но не адаптированы к конкретным людям внутри этой группы, а с другой не зависит от размера или качества входного набора данных[33].
В целях настоящего исследования нельзя обойти вниманием отправной научно-методологический подход, связанный с правовым осмыслением цифровых технологий в целом и алгоритмов в частности. Если в отношении технологий право «колеблется» между киберлибертарианством (утверждающим, что технологии радикально изменят право и приведут к утрате его значения перед лицом программного кода) и консервативной позицией, считающей, что право с легкостью урегулирует любые цифровые технологии в традиционном ключе, то касательно алгоритмов право изначально занимало позицию регулятора, т. е. право относится к алгоритму как объекту регулирования. При этом в юридическом смысле правовой охране подлежали не сами алгоритмы, а программы. Причем, что особенно важно для государственного управления, происходило это в рамках гражданского права, которое, как известно, распространяется на отношения с участием государства в ограниченном объеме.