В случае нет, мы должны просто разместить заказ на пиццу.
Теперь, что, если вы хотите, чтобы агент сделал больше, чем просто давал ответы пользователю?
Что если вы решите сохранить заказ пиццы в базе данных?
Вы можете достичь этого с выполнением fulfillment.
Выполнение это действие с использованием кода, развернутого вне диалога.
Это позволяет чат-боту выполнять внешнюю бизнес-логику на основе намерения.
После обнаружения намерения, которое соответствует действию, агент должен иметь возможность обратиться к внешней системе для выполнения действия.
И мы можем написать код для этого взаимодействия с внешней системой.
Здесь мы будем использовать встроенный редактор DialogFlow для написания кода.
Для размещения заказа пиццы, серверная сторона должна знать как минимум три фрагмента информации; размер пиццы, начинку и время получения заказа.
Это будут три разных сущности, которые нам необходимо идентифицировать и извлечь из запроса клиента.
Если клиент говорит: «Можно мне пиццу?», нам нужно настроить агента запросить дополнительную информацию, необходимую для отправки заказа в бэкэнд-систему, ответственную за размещение заказов.
Как мы можем собрать эти недостающие фрагменты информации?
Для этого мы можем использовать раздел действия и параметры намерения.
Здесь вы можете установить необходимые значения параметров, соответствующие сущностям в запросе.
Если пользователи опустят один или несколько параметров в своем ответе, ваш агент попросит их указать значения для каждого пропущенного параметра.
Поэтому в разделе действия и параметры отметим параметр pizza_topping и нажмем Define prompts.
И здесь мы введем вопросы, которые чат-бот задаст, если не обнаружит в намерении пользователя сущность pizza_topping.
И здесь вы также можете заметить, что отмечена опция «Список» для начинки, чтобы агент распознавал несколько начинок в запросе.
И мы создадим сущность размер size.
Далее вернемся в намерение и разметим его обучающие фразы этой сущностью.
Далее перейдем в раздел действия и параметры.
И здесь отметим параметр size и нажмем Define prompts.
И здесь введем уточняющий вопрос.
Таким образом, здесь мы добавим: «Хотите кусок или целый пирог?»
Это позволит агенту запросить информацию, если она не была захвачена.
Теперь, переключимся на выполнение.
И здесь мы видим встроенный редактор, который мы активируем.
И вы увидите, что здесь уже есть шаблон с некоторым кодом, написанным на nodeJS.
Этот код представляет собой веб-приложение nodeJS webhook, которое будет развернуто в Google сервисе Firebase.
Webhook это механизм получения уведомлений об определённых событиях.
В нашем случае это механизм уведомления об обнаружении определенного намерения чат-ботом.
И webhook в нашем примере будет развернут с помощью облачной функциональности Cloud Functions for Firebase, которая позволяет автоматически запускать код в ответ на события, вызванные HTTP-запросами.
Ваш код хранится в облаке Google и работает в управляемой среде.
После того, как вы напишите и развернете код, серверы Google сразу же начнут управлять этой облачной функцией.
И для нашего чат-бота бесплатного плана Spark Firebase будет достаточно.
И здесь во встроенном редакторе, у нас также есть файл package.json, и нам нужно изменить его.
Нам нужно добавить зависимость от Google базы данных Datastore, которую мы будем использовать для хранения заказа пиццы.
Поэтому мы добавим @google-cloud/datastore.
После этого нажмем кнопку Deploy развернуть.
В результате в наш проект будет добавлен облачный сервис Cloud Functions for Firebase, где будет развернут наш webhook.
Чтобы проверить развернут ли наш webhook, откроем страницу нашего Google проекта Dialogflow и нажмем Cloud Functions.
И здесь мы увидим нашу развернутую облачную функцию.
Теперь более подробно рассмотрим код webhook.
Здесь, у нас есть объявление о некоторых необходимых пакетах, которые нам нужно импортировать, и нам также необходимо импортировать пакет хранилища данных Datastore.
Поэтому здесь мы импортируем пакет Datastore.
И в строке 12 мы создадим новый экземпляр хранилища данных, привязав его к идентификатору нашего Google проекта.
Идентификатор проекта можно посмотреть в консоли проектов по адресу, указанному на слайде.
И здесь у нас есть основная функция dialogflowFirebaseFulfillment, где у нас есть функция для приветствия агента, и у нас есть функция для агента, который ничего не понимает.
Но у нас нет функции для заказа пиццы, и это то, что мы собираемся сюда добавить.
И далее, как только вы создали функцию, вам нужно сопоставить намерение с выполнением этой функции, с помощью добавления записи в карту намерений Map.
И если мы включим, например, Fulfillment в намерении приветствия, тогда если мы наберем в Try it hello, чат-бот ответит не фразой намерения, а функцией приветствия агента, которая определена в вебхук.
Теперь, давайте создадим функцию для заказа пиццы.
Здесь у нас есть функция order pizza, которая определяет переменные для извлечения параметров из пользовательского запроса.
Она создает ключ для хранения в базе данных, а затем создает новую сущность.
Эта сущность будет содержать значения переменных.
Возврат этой функции это действие сохранения содержимого созданной нами сущности в Datastore.
И в конце, мы должны добавить запись в карту намерений.
После этого развернем заново наш вебхук.
И теперь нужно включить Fulfillment для намерения order.pizza.upsell.drink-no, чтобы после того, как клиент отказался от напитка, мы сохранили наш заказ в базе данных.
Теперь все готово к работе и в панели Try it наберем
Могу ли я получить пиццу.
Затем ответим на вопрос о начинке и на вопрос о размере.
В результате получим ответ от агента, что наш заказ размещен.
Нажав на кнопку Diagnostic info можно посмотреть запросы и ответы вебхука в формате Json.
Чтобы проверить, сохранился ли заказ, откроем Google проект и в боковой панели выберем Datastore Entites.
И здесь мы увидим, что наш заказ успешно сохранился в облаке Google.
Google Dialogflow. Интеграция с Telegram
Dialogflow позволяет интегрировать вашего чат-бота с различными платформами.
Это такие популярные приложения как Google Assistant, Slack и Facebook Messenger и другие.
В качестве примера мы рассмотрим интеграцию нашего чат-бота с мессенджером Telegram.
Опция интеграция Telegram позволяет легко создавать ботов Telegram с пониманием естественного языка на основе технологии Dialogflow.
И для начала работы, откроем Telegram.
И здесь наберем @BotFather.
Далее нажмем кнопку Start.
Здесь нажмем ссылку /newbot и введем имя бота ex_bot.
И здесь мы должны скопировать сгенерированный токен доступа.
Вернемся в Dialogflow и включим интеграцию с Telegram.
В результате откроется диалоговое окно.
И здесь мы должны ввести сгенерированный токен доступа.
И нажать кнопку Start.
Вернемся в Telegram и откроем бота по его ссылке.
И здесь, нажав кнопку Start мы можем разговаривать с нашим чат-ботом.
ChatterBot
ChatterBot это библиотека Python, которая позволяет легко генерировать автоматические ответы на вводимые пользователем данные.
И ChatterBot использует набор алгоритмов машинного обучения для получения различных типов ответов.
И ChatterBot является независимой от языка библиотекой, что позволяет обучать чат-бота говорить на любом языке.
Кроме того, машинное обучение ChatterBot позволяет экземпляру агента улучшить свои знания о возможных ответах при дальнейшем взаимодействии с людьми и другими источниками данных.