Наконец, в разделе «Вариации и родственные игры» я показываю заманчивые ответвления, которые вы можете исследовать. Иногда это незначительные видоизменения правил, иногда совершенно новые игры, связанные с оригиналом исторически, концептуально или по духу.
5. Под занавес приведены сводные таблицы, обобщающие игры и общедоступная библиография, изложенная в форме ответов на часто задаваемые вопросы.
Да, и еще там я объясняю, откуда же взялось странное число 75
1
4
не такЗАМЕТКИ ДЕГУСТАТОРА ОБ ЭТОЙ КНИГЕ
Вы вольны читать эту книгу как любую другую. Переворачивайте страницы. Вежливо улыбайтесь шуткам. Мурлычьте под нос: «Вау, ничего себе рисунки. Я не прогадал, что раскошелился». Двигаясь от главы к главе, от начала к концу, от игры к игре, вы прекрасно проведете время.
Но лишитесь настоящего удовольствия.
Эта книга предназначена для того, чтобы с ней играли. Человек, играющий с математикой, похож на слона, получающего удовольствие от своего хобота, птицу, получающую удовольствие от своих крыльев, или Бэтмена, который получает удовольствие от своего навороченного автомобиля. Ради этого они и родились. Ваша способность к математическому мышлению дар такого масштаба, что ему нет аналогов в животном мире (его превосходит разве что кошачье искусство презрения). Пожалуйста, не оставляйте этот подарок эволюции нераспакованным. Достаньте его. Поиграйте с ним. Или по крайней мере уподобьтесь кошке и поиграйте с оберточной бумагой.
Большинство игр предназначено для нескольких игроков. Надеюсь, вы найдете компаньона, который разделит ваше любопытство и попробует вместе с вами освоить их. «Там, где царит соперничество, можно преподавать лишь мертвую математику, сказала математик Мэри Эверест Буль. Живая математика должна быть общим достоянием». На мой взгляд, даже состязательные игры это совместные проекты, в которых умы объединяются, чтобы выстраивать необычные логические и стратегические цепочки. Давид Бронштейн называл это «мышлением на двоих». Карл Меннингер «прогрессивной диффузией умов». Я предпочитаю говорить проще: «игра».
Как бы то ни было, это книга, и я очень надеюсь, что вы ее прочтете. Каждая игра высвечивает ту или иную истину о математике, от комбинаторного взрыва до теории информации. А эти математические истины проливают свет на игры. Кажется, что света слишком много? Не пугайтесь. Ваши глаза скоро привыкнут. Как однажды написал преподобный Чарльз Калеб Колтон, «изучение математики, подобно Нилу, начинается с малого и кончается великим».
ГЕНЕАЛОГИЯ МАТЕМАТИЧЕСКИХ ИГР
Игры, о которых я рассказываю в этой книге, рождались в парижских университетах, японских школьных дворах, шумных игорных залах, редакциях аргентинских журналов, их авторы скромные энтузиасты и бессовестные выскочки, подвыпившие профессора и озорные дети. Эти игры многогранны, ибо многогранна математика; несерьезны, ибо несерьезна математика. И они общедоступны, ибо математика общедоступна, что бы там ни говорили устрашающие формулы и язвительные профи.
Грубо говоря, я позаимствовал игры из четырех областей:
1. Традиционные детские игры, например «Морской бой», «Китайские палочки», «Точки-клеточки».
2. Игры для приятного времяпрепровождения, например «Тико», «Бокс на бумаге» и «Амазонки».
3. Концептуальные игры, придуманные математиками, например «Сим», «Ростки» и «Доминирование».
4. Необычные школьные игры, например «Соседи», «Из ряда вон», «101 и тебе крышка».
Как появляются игры? Что зажигает математический огонь? Я сам придумал девять игр, и мне бы следовало знать. Но нет единого пути, нет общей родословной. Индия подарила нам шахматы, Китай го, Мадагаскар фанорону, а мой двухлетний племянник Скандер пляски возле пазла с воплем «мовавававава».
Почему математические игры настолько универсальны? Честно говоря, не знаю. Возможно, потому что универсум настолько математичен.
Показательный пример: в 1974 году генетик Марша Джин Фалько начала рисовать символы на каталожных карточках. Это был инструмент исследования: каждая карточка означала собаку, а каждый символ генетическую комбинацию. Но после перетасовки и перегруппировки карточек все детали отпали. Она увидела чистые комбинации, абстрактные модели. Игру логики. Логику игры. «Материя не привлекает внимания [математиков], писал Анри Пуанкаре, их интересует только форма». Ветеринар, заглядывая через плечо Марши, стал задавать вопросы и натолкнул ее на идею игры.
Так родилось любимое развлечение Стивена Хокинга, любимая тема исследований ведущих математиков и одна из популярнейших карточных игр XX века: «Сет».
В том же самом, 1974, году один венгерский архитектор поставил перед собой конструкторскую задачу: можно ли сделать большой куб из маленьких кубиков, которые двигаются независимо друг от друга? Он попытался. И у него получилось. А потом ему взбрело в голову приклеить цветную бумагу на грани кубиков и покрутить их. Это был поворотный момент его жизни. «Парад красок приятно ласкал взгляд, вспоминал он позже, но в конце концов я решил, что настала пора возвращаться, как после отменной обзорной экскурсии и привести кубики в порядок».
Он попытался. Но не тут-то было. Как азартный человек, он увлекся. Спустя месяц куб удалось, наконец, вернуть в исходное состояние. Так Эрнё Рубик стал создателем самой продаваемой игрушки в истории человечества.
«Сет» и кубик Рубика демонстрируют нам два фундаментальных пути математической мысли. Вы можете начать с реальности, как Марша, и отыскивать ее абстрактную структуру или начать с абстрактной структуры, как сделал Эрнё, и искать ее смысл в реальности. В этом плане «Сет» и кубик Рубика не просто позволяют играть другим; они сами являются плодами игры воображения, праздного искусства гениальных приматов, которые никогда не перестают учиться.
ПОЧЕМУ МАТЕМАТИЧЕСКИЕ ИГРЫ ВАЖНЫ
Потому что они выявляют лучшее в человеческом мышлении.
В 1654 году некий азартный игрок написал двум математикам с просьбой решить головоломку. Представьте, что двое играют в орлянку. Первый, кто наберет семь очков, выигрывает сотню долларов. Но когда счет был 6:4, игра прервалась. Как честно разделить приз?
Два математика, Блез Паскаль и Пьер Ферма, решили задачу[4], более того, благодаря их решению началось математическое изучение неопределенности, которое мы сейчас называем теорией вероятностей.
Это фундаментальное орудие современности появилось на свет благодаря простой головоломке, связанной с игрой случая.
А вот еще одна история из жизни. Воскресными днями в 1700-е годы жители Кёнигсберга (ныне Калининград), прогуливаясь по четырем районам родного города, пытались пройти по всем семи мостам (Кузнечному, Рабочему, Зеленому, Лавочному, Деревянному, Высокому и Медовому), но только один раз. Успеха не добился никто. А в 1735 году математик Леонард Эйлер доказал, что это невозможно. Такого маршрута попросту не существовало. Его доказательство легло в основу теории графов исследования сетей, охватывающего все на свете, от соцсетей и поисковых алгоритмов в интернете до эпидемиологии. Google и битва против COVID-19 берут свое начало в праздном времяпрепровождении пруссаков XVIII века.
Хотите еще пример? Почтим память Джона Хортона Конвея, великого математика, он покинул наш мир, когда я работал над этой книгой. Конвей исследовал самые разные области математики, от клеточных автоматов до абстрактной алгебры. А кроме того, он вновь и вновь возвращался к играм. Его любимым открытием были сюрреальные числа, которые кодировали структуру игр для двух игроков в числовую систему. Его самое известное (и, следовательно, наименее любимое) открытие показало, как вселенская сложность может возникнуть из нескольких простых правил; он придумал игру под названием «Жизнь».