Как же так? Всё довольно просто: ни шуба, ни другие тёплые вещи не согревают, то есть они не дают тепла. Но благодаря своей плотности они задерживают тепло, предотвращая его рассеивание в пространстве. Так что согревающий эффект тёплых вещей достигается тем, что они не выпускают наружу тепло вашего собственного тела. Точнее задерживают поток тепла от нагретого тела. Эффект действует в обе стороны: тепло медленно проникает внутрь тёплой вещи, именно поэтому кусочек льда внутри шубы может долго не таять.
Такие материалы называются теплоизоляторами они изолируют какой-либо объём воздуха или тело от внешней среды, сокращая теплообмен. Конечно, идеальных теплоизоляторов не существует, поэтому лёд в любом случае растает, а в очень сильные морозы даже в самой тёплой шубе можно замёрзнуть. Но, как бы то ни было, а сами эти материалы не создают тепло, поэтому привычный оборот «шуба греет» фактически не верный тёплые вещи не создают тепло, а лишь не дают ему рассеяться.
Можно ли вскипятить воду в бумажной кастрюле?
Казалось бы, бумага не лучший материал для кастрюли, она же просто сгорит на печи! Но не стоит делать преждевременные выводы. Сначала разберёмся, какие процессы происходят при нагревании и кипении воды. И тогда ответ на вопрос станет очевидным: вскипятить воду в бумажной кастрюле можно!
Сделайте маленькую бумажную коробочку или кулёк, наполните эту «посуду» водой (хватит совсем немного), и поставьте над зажжённой свечой. И вы с удивлением увидите, как бумагу лижет огонь, но ничего страшного не происходит! А через какое-то время в воде появятся пузырьки, и она закипит. И всё это будет продолжаться до тех пор, пока наша бумажная кастрюля не размокнет и распадётся.
Почему бумага не загорелась? Всё дело в воде: при нагревании такой «посуды» всё тепло поглощается водой, что и не даёт бумаге чрезмерно нагреться. А так как вода кипит при 100 °C, то сильнее она нагреваться не будет излишки тепла будут уходить с паром. Так что при желании (если взять бумагу поплотнее) в такой бумажной «кастрюле» можно не просто вскипятить воду, но даже и яйцо сварить!
Кстати, по этой же причине не будет гореть бумажная лента или нить, плотно накрученная на гвоздь огонь будет лизать бумагу и нить, но все тепло будет отводиться гвоздём (так как металлы обладают высокой теплопроводностью). И загорится бумажная лента или нить только тогда, когда гвоздь сам нагреется до температуры воспламенения этих материалов.
Насколько быстро оседает пыль?
Наверняка, вы не раз наблюдали танец пылинок в солнечных лучах кажется, в чистом воздухе из ниоткуда появляются мелкие частички, они то мирно парят, то куда-то бегут от слабого дуновения ветра, но никогда не останавливаются. В былые времена люди думали, что пылинки легче воздуха, а поэтому никогда не прекращают свой танец. Но в действительности всё совсем не так.
Что такое пыль? Это микроскопические частицы, образующиеся в самых разных физических и химических процессах в ходе горения, при трении материальных тел (камней, металлических деталей машин, деревянных частей строений и многих других), в процессе жизнедеятельности организмом и т.д. Обычно к пыли относят частицы размером от сотни нанометров до нескольких сотен микрометров. То есть, самые крупные пылинки сравнимы по размерам с толщиной волоса, а самые мелкие с бактериями.
Но самое главное, что пыль состоит из твёрдых веществ, а потому она тяжелее воздуха и под действием гравитации должна оседать на землю. Однако пылинки настолько малы, что для них существенными становятся воздействия, на которые мало обращают внимание более крупные предметы сопротивление воздух, движения воздушных масс и даже движения отдельных молекул газов, составляющих воздух. Пылинки из-за малого веса с большой неохотой «тонут» в воздушном океане, и даже самый слабый ветерок может оторвать их от пола. А для частиц размером от 0,5 микрометров (0,0005 мм) и меньше в дело вмешивается броуновское движение их всегда «подталкивают» молекулы газов воздуха.
Итак, пыль всё же тяжелее воздуха, поэтому она должна оседать, но с какой скоростью? Наиболее крупные пылинки, которые мы видим невооружённым глазом, в закрытой непроветриваемой комнате оседают за несколько часов. Пылинкам размером в единицы и десятки микрометров на оседание нужны уже целые дни (до недели и более). А самые мелкие частички из-за броуновского движения могут парить в воздухе неделями и месяцами!
Именно из-за медленного оседания пыль может переноситься ветрами на сотни и тысячи километров от своего источника. Так что не удивляйтесь, но в вашем доме есть пыль и из далёкой сибирской тайги, и из африканских пустынь, и от уральских заводов, и из тундры, и даже с другого континента. И протирая пыль, вы совершаете путешествие почти по всему миру.
Можно ли убежать от дождя?
Существует поверье, что от дождя можно «убежать» чтобы меньше намокнуть, нужно быстрее двигаться. Конечно, добираясь до укрытия бегом, вы намокнете меньше, чем пешком. Однако, если представить, что дождь застал вас в чистом поле, и укрыться негде, то как вы намокнете меньше двигаясь бегом или пешком?
Чтобы решить эту задачку, нужно обратиться к геометрии, и заменить бегущего человека более удобным предметом вагоном. Пусть вагон покоится на месте, а капли дождя падают строго вертикально в этом случае за одну секунду на вагон падает столько капель, сколько заключено в параллелепипеде, основанием которого выступает крыша, а высотой путь, который проходит капля за секунду.
Теперь рассмотрим ситуацию с движущимся вагоном в этом случае можно представить, что дождь просто стал косым, его капли падают на крышу вагона под некоторым углом (чем выше скорость вагона, тем больше угол). За секунду на вагон будет падать столько капель, сколько заключено в наклонной призме с основанием в виде крыши вагона и наклонными боковыми рёбрами высотой, равной пути капель за секунду.
Простой расчёт показывает, что параллелепипед в первом случае и призма во втором случае имеют равные объёмы, а значит, в них содержится одинаковое число воды. Получается, что при движении под дождём с любой скоростью вы промокните одинаково!
Кажется, мы ответили на вопрос, и думать здесь больше не о чем. Однако всё не так просто. Дело в том, что эта задача, кажущаяся шутливой, довольно давно волнует умы учёных, и только в 1987 году было приведено точное её математические доказательство. Правда, расчёт проводился для идеальных условий вертикального дождя с одинаковыми каплями и безветренной погоды. И был получен именно тот ответ, что мы нашли умозрительным путём.
Но в 2011 году появились расчёты для реальных условий, и оказалось, что во многих ситуациях наши выводы ошибочны. Особенно, если мы примем во внимание наличие ветра. Оказалось, что меньше шансов промокнуть, если бежать по направлению ветра и примерно с его скоростью. Оно и понятно: при движении по ветру на вас будет падать меньше капель, чем при движении против ветра, так как во втором случае их скорость выше, и за единицу времени через условную призму пройдёт значительно больше капель.
Хотя, когда ты уже промок до ниток, несколько лишних капель никак не изменят ситуацию.
Откуда берутся искры при трении кремня?
Мы часто в своей жизни встречаемся с искрами, возникающими при трении целые снопы искр высекает наждачный круг из инструмента во время заточки, вылетают искры из-под колодок при торможении поезда, даже случайный удар металлических предметов или камней сопровождается несколькими слабыми искорками. И, конечно, появляются искры при трении кремня о кресало, причём эти искры способны зажечь легковоспламеняющиеся материалы, на чём основано действие огнива.