Во-вторых, наши кубы погружены в воздушный океан, поэтому на них, как и на любые другие тела, действует выталкивающая сила Архимеда. За счёт этого тела теряют часть своего веса, и чем больше объём тела, тем больше выталкивающая сила. Значит, большой куб из дерева будет больше терять в своём весе (а именно чуть больше 1,7 кг против 0,17 кг у железа), поэтому тонна железа будет весить больше.
Однако куда более интересно третье следствие. Предположим, что мы можем взвесить тонну железа и тонну дерева на Земле, и переместиться с этим добром на Луну или на гипотетическую планету без атмосферы и с силой притяжения 1g. Что мы увидим, если теперь произведём взвешивание при отсутствии силы Архимеда? А то, что тонна дерева окажется тяжелее! Причина проста: при взвешивании тонны железа и тонны дерева на Земле, мы вынуждены компенсировать выталкивающую силу Архимеда, добавляя уже указанную выше массу 1,7 кг для дерева и 170 г для железа. Естественно, при взвешивании в безвоздушном пространстве на тела не действует выталкивающая сила, и тонна железа будет весить 1001,7 кг, а тонна железа 1000,17 кг. Выходит, истинная тонна дерева, взвешенного в воздухе, выше истинного веса железа, взвешенного в воздухе!
Вот и выходит, что у простой задачи есть несколько решений, и каждый ответ правильный.
Почему лёд скользкий, а стекло нет?
Встав на лёд в обычной обуви или на коньках, вы сразу покатитесь, но встав на гладкое стекло этого не случится. Почему же лёд скользкий, а стекло нет?
Причина скольжения на льду очень проста: между поверхностью льда и скользящим по нему телом образуется тонкий слой воды, который выступает в роли смазки она снижает коэффициент трения и делает лёд скользким. То же можно наблюдать и на мокром полу поскользнуться на нём проще простого, даже если в сухом состоянии он не скользит!
Однако здесь же возникает вопрос а откуда на льду появляется вода? Ведь лёд может существовать только на морозе, воде при такой температуре взяться неоткуда. Интересно, что этим вопросом учёные задаются почти два века, и явного ответа на него нет. Но есть кое-какие предположения.
Одна из причин появления воды на поверхности льда давление. Оказывается, при повышении давления температура плавления льда снижается, а значит, при достаточном давлении со стороны коньков лёд начнёт плавиться даже на сильном морозе.
Но вот незадача: проведённые расчёты показывают, что давления от коньков не хватает для таяния льда! На выручку приходят некоторые особенности поверхности льда. Лёд не идеально гладкий он покрыт большими и микроскопическими неровностями, поэтому фактическая площадь опоры конька в сотни раз меньше, чем геометрическая площадь пятна контакта. Значит, и давление в месте контакта каждой микронеровности льда с микронеровностью конька в сотни, тысячи и даже десятки тысяч раз выше расчётного. Этого более чем достаточно для плавления и образования водяной плёнки!
Теперь понятно, что на стекле или любой другой гладкой поверхности без смазки трение остаётся сухим, а на льду трение всегда «мокрое», и именно поэтому он скользкий.
Куда летит камень?
Возьмите кучу камней и ради удовольствия покидайте их. Желательно не в окно, а просто в чистом поле. Вскоре вы увидите, что камни летят примерно по одинаковому пути, а если вы произведёте вычисления, то установите: каждый камень, независимо от угла и силы первоначального броска, летит по одной траектории параболе. И по параболической траектории движутся любые тела, брошенные в поле тяжести.
Но почему камень летит именно по параболе? Всё дело в так называемом принципе наименьшего действия (он также известен, как принцип Гамильтона или принцип стационарного действия).
Прежде, чем разобраться в существе этого принципа, нужно выяснить, что такое действие. В физике под действием понимают физическую величину, которая выступает мерой движения тела или физической системы. Если рассматривать окружающий нас макроскопический мир, за действие можно принять разность кинетической и потенциальной энергии тела за всё время его движения.
Поэтому под принципом наименьшего действия мы понимаем следующее: любое тело движется по такому пути, на котором разность кинетической и потенциальной энергии будет минимальной. И так уж вышло, что эта разность минимальна только при движении тела по параболической траектории.
Однако самое интересное здесь не сам принцип наименьшего действия, а тот факт, что тела «знают» о нем. В сущности, ничто не ограничивает свободу полёта брошенного камня, он может лететь сколь угодно сложными зигзагами, непредсказуемо меняя свою скорость и направление движения. Однако в реальности мы наблюдаем, что камень всегда «выбирает» параболическую траекторию с наименьшим действием. Этот вопрос имеет философский характер и на него нет однозначного ответа.
Принцип наименьшего действия универсален как для макромира, так и для микромира, в котором правит квантовая механика. Причём в квантовой механике (а точнее, в её копенгагенской интерпретации) считается, что любая движущаяся микрочастица «знает» о существовании всех возможных траекторий своего движения, и движется сразу по ним всем (а их может быть бесконечное количество!). Но при наблюдении с наибольшей вероятностью мы обнаружим эту частицу именно на той траектории, на которой соблюдается принцип наименьшего действия.
Как видите, простой полёт камня и микрочастицы это на не так уж и просто. Несмотря на то, что нам известен принцип наименьшего действия, и мы можем производить сложные расчёты траекторий движения физических тел, мы не можем дать однозначного ответа, как эти тела «выбирают» именно эти траектории.
Существует ли центробежная сила?
Что за странный вопрос, скажете вы, конечно же центробежная сила существует! Иначе как можно объяснить поведение тел при вращении? Что прижимает вас к дверце автомобиля при резком повороте? А какая сила прижимает к стенкам жидкости в центробежных насосах? Все эти и многие другие примеры не оставляют нам никаких шансов усомниться в существовании центробежной силы.
Однако, несмотря на все свои проявления, центробежная сила считается фиктивной, или псевдосилой. А причина заключается в том, что действия этой силы видят не все наблюдатели. Понять это можно на простом примере.
Вы, двигаясь в машине, делаете резкий вираж вас прижимает к дверце или с силой толкает в другую сторону. Вы, как наблюдатель, явно чувствуете центробежную силу и даже по известным формулам можете рассчитать её. Но пусть будет сторонний наблюдатель, неподвижно сидящий где-то рядом. Он видит несколько иную картину: при повороте автомобиля ваше тело по инерции продолжает двигаться прямо, что и приводит его к столкновению с дверцей.
Выходит, что для стороннего наблюдателя (который находится вне вашей системы отсчёта) никакой центробежной силы не существует!
Здесь есть один очень интересный момент. Несмотря на различные взгляды, оба наблюдателя (и внешний, и тот, что находится внутри движущейся системы) всё равно приходят к одним результатам вычислений величины действующей силы. Это называется принципом инвариантности физических законов, и он составляет одну из основ теории относительности.
Так что центробежная сила это одна из фиктивных сил, которая упрощает расчёты, но в действительности не является силой в полном смысле этого слова.
Легко ли расплавить лёд?
Казалось бы, что за странный вопрос лёд легко расплавить, просто взяв его в руки. Однако спешим удивить вас, сказав, что лёд расплавить сложнее, чем большинство металлов! Сейчас мы разберёмся, в чём тут дело, и вы больше не будете удивляться.