Картер Джейд - Python Библиотеки стр 5.

Шрифт
Фон

Настраиваем стиль seaborn:

```python

sns.set(style="whitegrid")

```

Эта строка устанавливает стиль для графика с помощью библиотеки seaborn. Здесь мы выбрали стиль "whitegrid", который добавляет белую сетку на фоне графика.

 Создаем гистограмму:

```python

plt.figure(figsize=(8, 6))

sns.histplot(df['Возраст'], bins=20, kde=True, color='skyblue')

```

Здесь мы создаем гистограмму для столбца 'Возраст' из DataFrame. `figsize=(8, 6)` устанавливает размер графика. `bins=20` указывает количество столбцов в гистограмме. `kde=True` добавляет оценку плотности на гистограмму. `color='skyblue'` задает цвет графика.

 Добавляем подписи и заголовок:

```python

plt.xlabel('Возраст', fontsize=12)

plt.ylabel('Частота', fontsize=12)

plt.title('Гистограмма возрастов', fontsize=14)

```

Эти строки добавляют подписи к осям и заголовок для улучшения понимания графика

 Добавляем сетку:

```python

plt.grid(axis='y', linestyle='', alpha=0.7)

```

Эта строка добавляет горизонтальную сетку для лучшей читаемости.

 Показываем график:

```python

plt.show()

```

И наконец, эта строка отображает график.

Этот код создает красивую гистограмму с данными о возрасте и демонстрирует базовые шаги визуализации данных с использованием библиотек Pandas, Matplotlib и Seaborn в Python.

Pandas предоставляет эффективные инструменты для работы с табличными данными, что делает его широко используемым в анализе данных, машинном обучении и других областях. DataFrame позволяет легко выполнять множество операций, от фильтрации и группировки данных до визуализации результатов. Это делает Pandas мощным инструментом для аналитики и обработки данных в Python.

Приведем примеры фильтрации, сортировки и агрегации данных с использованием библиотеки Pandas на основе предположимого DataFrame с информацией о людях:

В этом примере мы использовали фильтрацию для выбора только тех записей, где возраст больше 25 лет.

Здесь мы отсортировали DataFrame по столбцу 'Возраст' в порядке убывания.



В данном примере мы использовали агрегацию для расчета среднего возраста и суммы зарплаты для каждого города.

Эти примеры показывают базовые операции фильтрации, сортировки и агрегации данных с Pandas, которые могут быть полезны при работе с табличными данными.

2.3. Matplotlib

Matplotlib это библиотека для визуализации данных в языке программирования Python. Она предоставляет множество инструментов для создания различных типов графиков и диаграмм. Давайте рассмотрим несколько основных видов графиков и диаграмм, которые можно создать с помощью Matplotlib.

1. Линейный график

Линейный график подходит для визуализации зависимости одной переменной от другой. Рассмотрим пример:

```python

import matplotlib.pyplot as plt

# Создаем данные для примера

x = [1, 2, 3, 4, 5]

y = [10, 15, 7, 12, 9]

# Строим линейный график

plt.plot(x, y, marker='o', linestyle='-', color='b', label='Линейный график')

# Добавляем подписи и заголовок

plt.xlabel('X-ось')

plt.ylabel('Y-ось')

plt.title('Пример линейного графика')

plt.legend() # Добавляем легенду

# Показываем график

plt.show()

```

2. Гистограмма

Гистограмма используется для визуализации распределения данных. Пример:

```python

import matplotlib.pyplot as plt

import numpy as np

# Создаем данные для примера

data = np.random.randn(1000)

# Строим гистограмму

plt.hist(data, bins=30, color='skyblue', edgecolor='black')

# Добавляем подписи и заголовок

plt.xlabel('Значения')

plt.ylabel('Частота')

plt.title('Пример гистограммы')

# Показываем график

plt.show()

```

3. Круговая диаграмма

Круговая диаграмма отображает доли от целого. Пример:

```python

import matplotlib.pyplot as plt

# Создаем данные для примера

sizes = [15, 30, 45, 10]

labels = ['Категория 1', 'Категория 2', 'Категория 3', 'Категория 4']

# Строим круговую диаграмму

plt.pie(sizes, labels=labels, autopct='%1.1f%%', startangle=90, colors=['skyblue', 'lightcoral', 'lightgreen', 'lightpink'])

# Добавляем заголовок

plt.title('Пример круговой диаграммы')

# Показываем график

plt.show()

```

4. Диаграмма разброса

Диаграмма разброса отображает связь между двумя переменными. Пример:

```python

import matplotlib.pyplot as plt

import numpy as np

# Создаем данные для примера

x = np.random.randn(100)

y = 2 * x + np.random.randn(100)

# Строим диаграмму разброса

plt.scatter(x, y, color='green', alpha=0.7)

# Добавляем подписи и заголовок

plt.xlabel('X-ось')

plt.ylabel('Y-ось')

plt.title('Пример диаграммы разброса')

# Показываем график

plt.show()

```

5. Столбчатая диаграмма

Столбчатая диаграмма хорошо подходит для сравнения значений различных категорий.

```python

import matplotlib.pyplot as plt

# Создаем данные для примера

categories = ['Категория 1', 'Категория 2', 'Категория 3', 'Категория 4']

values = [25, 40, 30, 20]

# Строим столбчатую диаграмму

plt.bar(categories, values, color=['blue', 'orange', 'green', 'red'])

# Добавляем подписи и заголовок

plt.xlabel('Категории')

plt.ylabel('Значения')

plt.title('Пример столбчатой диаграммы')

# Показываем график

plt.show()

```

6. Ящик с усами (Boxplot)

Диаграмма "ящик с усами" отображает статистическое распределение данных.

```python

import matplotlib.pyplot as plt

import numpy as np

# Создаем данные для примера

data = np.random.randn(100, 3)

# Строим ящик с усами

plt.boxplot(data, labels=['Группа 1', 'Группа 2', 'Группа 3'])

# Добавляем подписи и заголовок

plt.xlabel('Группы')

plt.ylabel('Значения')

plt.title('Пример диаграммы "ящик с усами"')

# Показываем график

plt.show()

```

7. Тепловая карта

Тепловая карта отображает данные в виде цветового спектра, что делает их восприятие более интуитивным.

```python

import matplotlib.pyplot as plt

import numpy as np

# Создаем данные для примера

data = np.random.rand(10, 10)

# Строим тепловую карту

plt.imshow(data, cmap='viridis', interpolation='nearest')

# Добавляем цветовую шкалу

plt.colorbar()

# Добавляем заголовок

plt.title('Пример тепловой карты')

# Показываем график

plt.show()

```

Эти примеры демонстрируют некоторые из возможностей библиотеки Matplotlib для создания различных типов графиков и диаграмм. Matplotlib предоставляет широкий спектр инструментов для настройки внешнего вида графиков, что делает ее мощным средством для визуализации данных в Python.

Выбор типа графика или диаграммы зависит от характера ваших данных и целей визуализации. Ниже несколько рекомендаций о том, в каких случаях лучше применять различные виды графиков:

Линейный график:

 Когда нужно отобразить изменение значения переменной в зависимости от другой переменной во времени.

 Подходит для отслеживания трендов и показывает, как изменяется значение с течением времени.

Гистограмма:

 Когда вам нужно визуально представить распределение данных.

 Полезна для оценки формы и характеристик распределения, таких как центральная тенденция и разброс.

Круговая диаграмма:

 Когда вам нужно показать долю каждой категории относительно общего значения.

 Эффективна при отображении процентного соотношения различных категорий в целом.

Диаграмма разброса:

 Когда необходимо показать взаимосвязь между двумя переменными.

 Идеальна для выявления корреляции и выявления возможных выбросов в данных.

Столбчатая диаграмма:

 Когда требуется сравнение значений различных категорий.

 Полезна для наглядного отображения различий между группами или категориями.

Ящик с усами (Boxplot):

 Когда нужно визуализировать распределение данных, а также выявить наличие выбросов.

 Полезен для оценки статистических характеристик данных и сравнения распределений в различных группах.

Тепловая карта:

 Когда вы хотите представить матрицу данных в виде цветового спектра.

 Подходит для отображения взаимосвязи между двумя наборами данных или для выявления паттернов в матричных данных.

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке