Занимательно о микроконтроллерах - Александр Микушин страница 2.

Шрифт
Фон

Александр Микушин - Занимательно о микроконтроллерах

Рис. 1.1.Место, занимаемое микропроцессорами среди микросхем

Все микросхемы разделяются на две большие группы: аналоговые и цифровые. Преимущества и недостатки каждой из них известны. Аналоговые микросхемы характеризуются максимальным быстродействием при малом потреблении энергии и сравнительно малой стабильностью параметров. Цифровые микросхемы обладают прекрасной повторяемостью параметров, меньшей чувствительностью к воздействию помех. В последние годы, при применении цифровых микросхем для построения приемопередающих устройств, а также устройств обработки звука и изображения удалось достигнуть большего по сравнению с аналоговой техникой динамического диапазона. Эти преимущества и привели к быстрому развитию цифровой техники в последние годы.

По мере развития цифровых микросхем их быстродействие достигло впечатляющих результатов. Наиболее быстрые обладают временем переключения порядка 3–5 не (серия микросхем 74ALS), а внутри кристалла микросхемы, где нет больших емкостей нагрузки, время переключения измеряется пикосекундами. Таким быстродействием обладают программируемые логические интегральные схемы (ПЛИС) и заказные большие интегральные схемы (БИС). В этих микросхемах алгоритм решаемой задачи воплощен в их внутренней структуре.

Часто для решаемой задачи не требуется такого быстродействия, каким обладают современные цифровые микросхемы. Однако за быстродействие приходится платить. Это выражается в следующем:

- быстродействующие микросхемы потребляют значительный ток, что ограничивает их сложность (уровень интеграции);

- для решения задачи приходится использовать много микросхем, что выливается в высокую стоимость и большие габариты устройства.

Напомню основные характеристики различных видов цифровых микросхем.

Наибольшим быстродействием и наименьшей помехоустойчивостью обладали ЭСЛ-микросхемы (эмиттерно-связанная логика). Однако принципиальная особенность работы этих микросхем, заключающаяся в работе входящих в их состав транзисторов в активном режиме, приводит к тому, что микросхемы такого типа обладают пониженной помехоустойчивостью. Это затрудняет построение микросхем, надежно реализующих достаточно сложные алгоритмы работы. В настоящее время ЭСЛ-микросхемы практически не применяются.

Следующий вид цифровых микросхем - это ТТЛ (транзисторно-транзисторная логика). Современные ТТЛ-микросхемы обладают почти таким же быстродействием, как традиционная ЭСЛ. В связи с особенностями внутреннего устройства ТТЛ-микросхемы потребляемый ею ток питания не зависит от скорости переключения логических вентилей. И работая на пределе быстродействия, и переключаясь только несколько раз в секунду, микросхема потребляет одинаковый ток. Поэтому выпускается несколько различных серий ТТЛ-микросхем, обладающих различным быстродействием и, соответственно, различным током потребления.

В современном мире наибольшее распространение получили КМОП-микросхемы, построенные на комплементарных транзисторах с изолированным затвором. Их особенностью является то, что используется двухтактная схема. В статическом состоянии, если один из двух последовательно включенных транзисторов с разным типом проводимости открыт, то второй закрыт. Это означает, что ток через логический вентиль не протекает ни при формировании на выходе логической единицы, ни при формировании логического нуля. То есть в статическом состоянии через микросхему протекают только токи утечки транзисторов и из цепи питания практически ничего не потребляется. Потребляемый ток возрастает только при увеличении скорости переключения логических КМОП-вентилей. На предельных скоростях работы КМОП-микросхемы ее потребление становится сравнимым с аналогичным параметром ТТЛ-микросхем и даже может превосходить его.

Итак, задачу потребления минимального тока, обеспечивающего требуемое в данный момент быстродействие, решает применение КМОП-микросхем (например, серий 1564, 74НС, 74АНС, универсальных микропроцессоров AMD или PENTIUM). Именно поэтому в настоящее время преимущественное распространение получили КМОП-микросхемы.

Задачу уменьшения стоимости и габаритов решают несколькими способами. Для жесткой логики - это разработка специализированных БИС. Их использование позволяет уменьшить габариты устройства, но стоимость его снижается только при крупносерийном производстве, таком как производство радио- или телевизионной аппаратуры. Для среднего и малого объемов производства такое решение неприемлемо. Тем не менее, для крупносерийного производства альтернативы этой технологии нет, так как при этом получается наименьшая стоимость микросхем.

Еще одним решением уменьшения габаритов и стоимости устройства является применение программируемых логических интегральных схем (ПЛИС). В этих микросхемах присутствуют как бы два слоя. Один слой - это набор цифровых модулей, способных решить практически любую задачу. Второй слой хранит структуру связей между модулями первого слоя. Эту структуру можно программировать, и тем самым менять схему устройства, а значит и решаемую микросхемой задачу. Это направление активно развивается в настоящее время, но оно не входит в рамки рассмотрения данной книги.

Третий способ решения задачи уменьшения габаритов и стоимости заключается в том, что можно заставить одно очень быстродействующее устройство со сложной внутренней структурой, допускающей реализацию большого числа элементарных операций, последовательно решать различные задачи. Этот подход воплощают микропроцессоры. В микропроцессорах возможен обмен предельного быстродействия на сложность реализуемого в этой микросхеме устройства. Быстродействие микропроцессоров стараются максимально увеличить - это позволяет реализовывать все более сложные устройства в одном и том же объеме полупроводникового кристалла. Более того! В одном процессоре можно реализовать несколько устройств одновременно! Именно этот вариант решения задачи уменьшения габаритов и стоимости устройств и рассматривается в предлагаемой вашему вниманию книге.

В современном мире трудно найти область техники, где не применялись бы микропроцессоры. Они используются для вычислений, выполняют функции управления, обрабатывают звук и изображение. В зависимости от области применения микропроцессора варьируются требования к нему. Это накладывает отпечаток на его внутреннюю структуру. В настоящее время определилось три основных направления развития микропроцессоров, подразумевающих различную внутреннюю структуру этих устройств:

- универсальные микропроцессоры;

- микроконтроллеры;

- сигнальные микропроцессоры.

Универсальные микропроцессоры служат для построения вычислительных машин. В них используются самые передовые решения, направленные на повышение быстродействия; при этом не обращают особого внимания на габариты, стоимость и потребляемую энергию. Компьютеры не только работают у вас дома или в офисе, но и используются для управления системами или устройствами, обладающими большими габаритами и стоимостью. Для всех этих приложений массогабаритные и энергетические показатели не имеют особого значения.

Микроконтроллеры. Для управления малогабаритными и дешевыми устройствами используются однокристальные микроЭВМ, которые в настоящее время называют микроконтроллерами. В микроконтроллерах максимальное внимание уделяется именно уменьшению габаритов, стоимости и потребляемой энергии.

Сигнальные процессоры. Еще один класс микропроцессоров решает задачи, которые традиционно выполняли аналоговые электронные устройства. К сигнальным процессорам предъявляются специфические требования. От них требуются максимальное быстродействие и малые габариты, простая стыковка с аналого-цифровыми и цифроаналоговыми преобразователями, большая разрядность обрабатываемых данных и небольшой набор математических операций, обязательно включающий операцию умножения-накопления и аппаратную организацию циклов.

Рассмотрим более подробно каждую из упомянутых категорий микропроцессоров.

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке