Лептонная эра: 1 с. Формируются ядра водорода. Начинается ядерный синтез гелия.
Эра нуклеосинтеза: 3 мин. Вселенная состоит на 75 % из водорода и на 25 % из гелия, а также следовых количеств тяжелых элементов.
Радиационная эра: 1 неделя. К этому времени излучение термализуется.
Эра вещества: 10–380 тыс. лет. Вещество начинает доминировать во Вселенной. Ядра водорода и электроны рекомбинируют, Вселенная становится прозрачной для излучения.
Звездная эра: 1–9 млрд лет. Образование первых звезд и формирование первых галактик. Образование Солнечной системы.
Глава 4. Вселенское яйцо
Через миллиарды лет развитые формы разума смогут создавать новые вселенные. Возможно, они даже смогут выбирать, какие физические законы должны действовать в созданных ими мирах. Или им будет дано моделировать Вселенную такой же или даже сложнее, чем та, в которой сегодня мы полагаем свое существование.
М. Рис.
Наш последний час
Одним из первых модель рождения нашего мира в виде некоего "вселенского яйца", которое расколол Большой взрыв, в духе физических представлений своего времени предложил бельгийский священник, астроном и математик Жорж Леметр. Будучи в Америке, Леметр ознакомился с результатами измерений галактического красного смещения и галактических расстояний, выполненных Эдвином Хабблом. Эти данные позволяли предположить, что галактики разбегаются по всем направлениям, причем их скорость пропорциональна удаленности от Солнечной системы. Леметр вычислил последующую эволюцию "взорвавшейся" Вселенной на основе уравнений общей теории относительности и вывел линейную зависимость между скоростью удаления галактик и расстоянием до них.
В теории расширяющейся Вселенной Леметра зародышем мироздания служит не просто "вселенское яйцо" конечных размеров, а сверхмассивный первичный атом, существовавший вне пространства и времени. Его взрыв порождает опять-таки сверхтяжелые и потому нестабильные осколки, фрагменты которых тоже должны делиться. Если принять во внимание количество частиц, которое по современным оценкам содержит Вселенная, то получится, что атом-отец и его потомки во множестве поколений должны претерпеть несколько сотен делений и на этом остановиться.
Однако такая схема даже семьдесят лет назад не могла вызвать доверия. В процессе множественных делений в конце концов должны были возникать максимально устойчивые атомы. А поскольку титул абсолютного чемпиона ядерной стабильности принадлежит железу, то в космических масштабах именно оно должно было оказаться самым распространенным элементом. Однако в тридцатые годы прошлого века астрономы уже достоверно знали, что Вселенная почти полностью состоит из водорода и гелия. Несомненным достоинством модели Леметра было предсказание и объяснение закона Хаббла. Но данные об элементном составе Вселенной не согласовывались с теорией первичного атома. На макроуровне концепция бельгийского ученого работала превосходно, а на микроуровне заводила в тупик.
Именно на этом этапе в игру вступил Георгий Гамов. Гамов познакомился с моделью нестационарной Вселенной еще на студенческой скамье, когда учился у Фридмана. По окончании Ленинградского университета он посвятил себя ядерной физике и выполнил несколько классических работ, в частности построил теорию альфа-распада и предложил капельную модель ядра. Впоследствии он эмигрировал и в своих исследованиях полностью переключился на астрофизику. Основываясь на работах Леметра, Гамов начал поиск решения проблемы возникновения в Большом взрыве окружающих нас химических элементов.
Поскольку расширение Вселенной приводит к ее постепенному охлаждению, сжатие должно вызывать обратный эффект. Поэтому, исследуя модель Леметра назад во времени почти до исходного момента, Гамов заключил, что сразу после рождения мира все имевшееся вещество было чрезвычайно нагрето. Это был огромный шаг вперед по сравнению с леметровским атомом, для которого понятие температуры вообще не имело смысла. Однако следовало еще определиться с составом первичной материи.
Гамов предположил, что ранняя Вселенная была заполнена элементарными частицами, включая протоны, нейтроны и электроны. Эту смесь он назвал айлемом, использовав термин из средневекового английского языка, означающий некую первосубстанцию как источник всего сущего. И на этот раз интуиция не подвела замечательного физика, ведь по современным представлениям к концу первой секунды Большого взрыва все известное нам вещество Вселенной полностью состояло из айлема.
Спустя некоторое время астрофизики, анализируя построения Гамова, пришли к выводу, что Вселенная должна быть заполнена микроволновым излучением, возникшим примерно через 300 тыс. лет после ее начала. Это было предсказанием принципиально нового явления, еще не известного науке. Регистрация микроволнового излучения, осуществленная в шестидесятых годах прошлого века, оказалась сильным аргументом в пользу теории горячего рождения Вселенной.
Однако вернемся к совершенно фантастическому этапу инфляции. Когда маятник рождающейся Вселенной сделал один раз хроноквантовый "тик" и ее размеры стабилизировались, сформировался тот набор фундаментальных физических законов, которые до сих пор управляют окружающей нас реальностью. Одновременно из вакуума возник феерический фонтан рождающихся элементарных частиц. В результате к концу инфляционной фазы Вселенная уже была наполнена горячей кашей из разнообразных микрочастиц и электромагнитного излучения.
Очень важно, что обычных (естественно, с нашей точки зрения) частиц оказалось чуть больше, нежели античастиц. Эта разница была микроскопической, порядка стотысячных долей процента, но все же не нулевой. В результате, когда Вселенная охладилась настолько, что излучение перестало рождать новые частицы, вся антиматерия исчезла в процессе аннигиляции. Через 30 микросекунд после Большого взрыва субэлементарные кварки и связывающие их глюоны сконденсировались в нуклоны-протоны и нейтроны, а где-то на десятой секунде наступила эра первичного нуклеосинтеза, то есть возникновения композитных ядер гелия, дейтерия и лития.
Глава 5. На просторах мультивселенной
Космос состоит из множества раздувающихся шаров – миров, которые дают начало таким же шарам, а те, в свою очередь, рождают подобные шары в еще больших количествах, и так до бесконечности.
Возможно, параллельно нашей Вселенной существует еще множество других вселенных, в которых действуют свои собственные физические законы…
Единственная проблема в том, что мы не способны заглянуть в другие вселенные, самым фактом своего рождения отгороженные от нас. Мы не можем наблюдать за ними, и эта невозможность удручает любого ученого.
А. Д. Линде.
Рождение Вселенной
В последние годы термин Мультивселенная, а также его аналоги: Мультиверс, Мегамир, Мега-вселенная и Метавселенная появились в трудах целого ряда космологов, астрофизиков и философов. При этом многие из них уверены, что эта идея может стать одним из краеугольных камней новой модели мироздания.
Между тем этот необычный термин для мира, содержащего множество равноправных реальностей, придумал известный английский писатель-фантаст Майкл Муркок. В последнее время возникло много космологических сценариев возникновения и эволюции Мультивселенной. Однако в современную физику идея многомирности вошла в середине прошлого столетия совершенно необычным образом. Она появилась в научной работе аспиранта Принстонского университета Хью Эверетта, посвященной весьма необычному варианту квантовой теории измерений. Долгое время большинство физиков относилось к теории Эверетта настороженно, но затем некоторые видные космологи стали использовать понятие Мультивселенной в своих сценариях возникновения окружающего мира. Это сразу же вернуло интерес к идеи многомирности и позволило по-новому взглянуть на первые моменты рождения мироздания.
Так, согласно самому распространенному космологическому сценарию инфляционное расширение развилось практически сразу же после начала Большого взрыва, точнее, через один хроноквант, и длилось порядка одного хронокванта. На этом этапе существовал только физический вакуум, параметры которого сильно менялись из-за квантовых всплесков – флуктуаций. Далее развитие одной из флуктуаций привело к внутреннему скачку энергии с переходом в инфляционный режим расширения. В итоге возник молниеносно расширяющийся пузырек с первоначальным диаметром ячейки пространства – времени, который и стал зародышем нашей Вселенной.
Инфляция пузырька-предтечи была чрезвычайно кратковременной, и за ничтожно малое время его поперечник вырос до размеров нашей Вселенной. Далее наш новорожденный мир эволюционировал в соответствии со сценарием Фридмана – Ситтера – Гамова. Самое удивительное, что с течением времени темп расширения не только перестал падать, но, напротив, начал возрастать, что мы сегодня и наблюдаем. Случайные квантовые изменения структуры первичного физического вакуума приводят к возникновению исполинских областей пространства – времени (по-физически – континуума), которые в совокупности и составляют Мультивселенную. Флуктуация, которая рождает данный регион, выступает в качестве "встроенного" в него Большого взрыва.
Наша Вселенная принадлежит этой совокупности миров, но не имеет в ней особого статуса. Отдельные вселенные как бы вложены в единый пространственно-временной континуум наподобие матрешек, но разнесены в нем настолько, что не чувствуют присутствия друг друга.