Мухин Лев Михайлович - Мир астрономии. Рассказы о Вселенной, звездах и галактиках стр 6.

Шрифт
Фон

Проверялось абсолютно все. На подозрение была взята даже парочка голубей, которая облюбовала рупор антенны и за время подготовительных работ угнездилась в нем. Вследствие этого рупор, естественно, был покрыт, по выражению интеллигентного Пензиаса, "белым диэлектрическим веществом". Около года ушло на ликвидацию последствий пристрастия голубей к радиоастрономическим поискам и на улучшение характеристик антенны.

В 1965 году эксперименты начались снова и снова дали тот же результат. Небо давало микроволновый фон, шум, и величина сигнала не зависела от направления. Откуда же этот шум мог появиться, если всевозможные помехи были учтены и устранены?

Пензиас и Вильсон не могли ответить на этот вопрос. Для начала они попытались определить характеристики обнаруженного ими шума и в первую очередь его интенсивность. А интенсивность теплового радиошума очень удобно описывать, пользуясь понятием обычной температуры. Действительно, любое тело "шумит" в радиодиапазоне за счет теплового движения электронов внутри тела. Грубо говоря, чем выше температура, тем выше интенсивность теплового шума. Поэтому в радиотехнике используется понятие "эквивалентной температуры" радиоизлучения. Итак, оказалось, что шум, открытый Пензиасом и Вильсоном, имел температуру около 3,5 K. (Здесь нельзя не сказать о том, что за год до открытия Пензиаса и Вильсона советские астрофизики А. Дорошкевич и И. Новиков теоретически предсказали возможность обнаружения реликтового излучения в сантиметровом диапазоне. Но, к сожалению, на эту работу не обратили тогда должного внимания экспериментаторы.)

Пока еще никто не мог подумать, что сделано второе великое открытие в астрофизике (первое - красное смещение).

Случай играет не последнюю роль в науке. Ведь Пензиас и Вильсон понятия не имели о том, что такое реликтовое излучение. Они просто натолкнулись на него. А практически в то же время всего в нескольких десятках километров от антенны фирмы "Белл" группа Р. Дикке, крупного американского астрофизика, строила специальную антенну для поиска отголосков Большого Взрыва.

Дикке знал о работах Гамова и придавал им большое значение. Именно поэтому, когда астрофизики узнали о результатах Пензиаса и Вильсона, Дикке мгновенно объяснил их, и соответствующие публикации в журнале "Nature" появились одновременно, но с экспериментальными результатами Дикке опоздал примерно на полгода. 20 лет размышлял Нобелевский комитет, кому присудить премию - счастливчикам Пензиасу и Вильсону или Р. Дикке. Как мы знаем, выиграли счастливчики.

Конечно же, это открытие могло быть сделано и раньше. Ведь о Большом Взрыве говорили и до 1965 года. Но, как указал лауреат Нобелевской премии по физике Е. Вигнер, теория Большого Взрыва не привела к поиску реликтового излучения потому, что физикам было трудно серьезно воспринять любую теорию ранней Вселенной: "Это открытие заставило всех нас всерьез отнестись к мысли, что ранняя Вселенная была".

Итак, случайное открытие реликтового излучения дало новую свежую пищу теоретикам, и на вопрос о том, "что было в начале?", стали появляться вполне конкретные ответы.

Большой взрыв и космология

Лев Мухин - Мир астрономии. Рассказы о Вселенной, звездах и галактиках

Лев Мухин - Мир астрономии. Рассказы о Вселенной, звездах и галактиках

Обсерватория древних майя. Чичен Итца, Мексика. 900 год нашей эры.

Планковская Вселенная

Как родилась Вселенная? "Конечно же, в результате Большого Взрыва", - ответит сейчас подавляющее большинство людей. И действительно, о Большом Взрыве ежегодно публикуется огромное число статей и в научной и в научно-популярной печати. Но самое-то интересное заключается в том, что взрыва в обычном понимании этого слова не было!

Разберемся для начала, какой смысл вкладывают в слово "взрыв" физика и химия. Возьмем самый простой случай, хорошо известный и понятный всем, - взрыв бомбы. Как он происходит? Взрывчатое вещество за очень небольшой промежуток времени сгорает и превращается в горячий газ, который создает огромное давление внутри корпуса бомбы. Поскольку это давление не уравновешено давлением снаружи, корпус разлетается на куски, так как он не в состоянии выдержать внутреннее давление, происходит взрыв. Весь этот процесс длится тысячные доли секунды. Следовательно, взрывной процесс характеризуется в первую очередь высвобождением значительного количества энергии в небольшом объеме за малое время.

Справедливо ли применять слово "взрыв" к начальным стадиям расширения Вселенной? Другими словами, можно ли сказать, что огромное давление сжатой в точку Вселенной явилось причиной ее расширения (взрыв бомбы)?

Нет! При взрыве расширение происходит из-за разности между большим давлением продуктов взрыва и малым давлением окружающего их атмосферного воздуха. Но когда мы рассматриваем раннюю Вселенную, понятия "снаружи" и "внутри" теряют смысл, а давление в однородной Вселенной распределено равномерно. Между различными частями Вселенной нет разности давления, а значит, нет и силы, вызывающей расширение.

В чем же дело? Почему Вселенная начала расширяться? На этот вопрос сегодня нет общепринятого ответа.

Очень трудно говорить о тех временах, когда вся видимая сегодня Вселенная была величиной с маковое зернышко. Но предполагается, что она действительно миллиарды лет тому назад была именно таких размеров (и даже меньше) и действительно стала расширяться.

Сегодня космология еще не в состоянии ответить на ряд принципиальных вопросов. Среди них основные: что было до начала наблюдаемого расширения? Будет ли Вселенная вечно расширяться или опять сожмется в точку (как говорят физики, образуется ли снова сингулярность - состояние вещества с бесконечной плотностью)? Мы надеемся, что ответы на эти вопросы будут получены в близком будущем.

Но отсутствие ответов сейчас, сегодня, не мешает физикам рассматривать самые ранние стадии расширения Вселенной. Некоторые теории оперируют с временами 10 секунды от начала. Это, по выражению академика Я. Зельдовича, "очень-очень ранняя Вселенная". Есть теории, которые "заглядывают" в еще более ранние моменты времени. О них у нас тоже пойдет разговор. А термин "Большой Взрыв" сейчас общепринят, и мы его будем использовать. Тем более что скорости процессов, происходящих при "рождении" нашего Мира, в неизмеримое число раз превышают скорости любых известных сегодня взрывных процессов. Поэтому-то расширение Вселенной действительно можно уподобить "сверхвзрыву", Большому Взрыву.

Почему для нас так важны начальные этапы развития Вселенной, почему космологи пытаются проанализировать самые ранние моменты, заглянуть как можно глубже в прошлое нашего мира? Да потому, что никакая космологическая модель, никакая теория невозможна без достаточно полного понимания начальных этапов развития Вселенной - ведь именно тогда закладывалось ее будущее, все последующие стадии ее формирования. И эти стадии нельзя понять, не зная, какой была ранняя, горячая Вселенная. Чтобы представить себе развитие Вселенной, следует прежде всего постараться понять, что представляло собой вещество Вселенной, материя на разных этапах ее существования.

Важность постановки такой задачи очевидна. Ведь решения уравнений ОТО, полученные Фридманом, говорят о том, что Вселенная расширяется из точки, из сингулярности. Но решения эти, с другой стороны, ничего не говорят о состоянии и поведении вещества вблизи сингулярности, а для нас сейчас, когда мы начинаем рассматривать ранние стадии Вселенной, именно это и является самым главным.

Сегодня, миллиарды лет спустя после Большого Взрыва, во Вселенной есть наблюдатели-астрономы, и мы знаем "начинку пирога". Это звезды, планеты, галактики, кометы, скопления галактик и многое другое. Но проделаем мысленный эксперимент и начнем сжимать Вселенную. Температура и плотность начнут повышаться… Ясно, что на каком-то этапе сжатия и планеты и звезды просто-напросто перестанут существовать. При дальнейшем росте температуры и сжатия станут неустойчивыми атомы, а потом и их ядра.

До сих пор мы говорили лишь об ОТО, которая описывает процессы расширения и сжатия мира. Но совершенно ясно, что сейчас для рассказа о поведении вещества мы должны обратиться к другим физическим теориям.

Вопросы, рассматриваемые нами, исключительно сложны, а очень многие их аспекты еще ждут своего решения. Но именно эти задачи и являются на сегодня наиболее "горячими точками" современной физики и космологии. Какими же теоретическими "инструментами" пользуются современные ученые?

Самая красивая из физических теорий - ОТО представляет собой типичный пример классической теории. Что это значит? В уравнения ОТО не вводится никаких новых фундаментальных физических постоянных. В них присутствуют лишь скорость света и гравитационная постоянная Ньютона.

Другим примером классической теории является электродинамика, созданная более ста лет назад Д. Максвеллом. Всего 80 лет назад большинство физиков свято верило, что в природе существует лишь два вида фундаментальных взаимодействий - гравитация и электромагнетизм. Они имеют неограниченный радиус действия и могут быть не только измерены с помощью приборов, но хорошо известны "в быту": если, например, кирпич упадет на голову, можно не сомневаться в том, что вы на практике столкнулись с гравитацией. Электромагнитные взаимодействия также хорошо знакомы каждому человеку, поскольку самые разнообразные физические, химические, биологические явления зависят от электромагнетизма.

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке