В пособии представлены и систематизированы современные сведения по всем разделам биохимии. Рассматриваются основные положения статической, динамической и фундаментальной биохимии. Приведена характеристика метаболизма белков, углеводов, липидов, нуклеиновых кислот в норме и при некоторых патологических состояниях. Охарактеризованы особенности метаболизма в различных органах и тканях. Изложены современные представления о молекулярных основах нарушений при ряде патологических состояний и болезней.
Предназначено для студентов медицинских вузов, биологов, врачей.
Содержание:
Список сокращений 1
Глава 1. Введение в биохимию 1
Глава 2. Строение и функции белков 2
Глава 3. Ферменты. Механизм действия ферментов 6
Глава 4. Регуляция активности ферментов. Медицинская энзимология 7
Глава 5. Структура и функции нуклеиновых кислот 10
Глава 6. Биосинтез нуклеиновых кислот 11
Глава 7. Биосинтез белка 14
Глава 8. Введение в метаболизм 17
Глава 9. Биологические мембраны 18
Глава 10. Энергетический обмен. Биологическое окисление 19
Глава 11. Типы окисления. Антиоксидантные системы 21
Глава 12. Биохимия гормонов 23
Глава 13. Особенности действия гормонов 25
Глава 14. Биохимия питания 30
Глава 15. Основы витаминологии 31
Глава 16. Углеводы тканей и пищи – обмен и функции 34
Глава 17. Пути метаболизма глюкозы 35
Глава 18. Обмен гликогена 36
Глава 19. Липиды тканей, переваривание и транспорт липидов 36
Глава 20. Обмен триацилглицеролов и жирных кислот 39
Глава 21. Обмен сложных липидов 41
Глава 22. Метаболизм холестерола. Биохимия атеросклероза 42
Глава 23. Обмен аминокислот. Динамическое состояние белков организма 43
Глава 24. Образование и обезвреживание NH3 в организме 46
Глава 25. Метаболизм отдельных аминокислот 47
Глава 26. Обмен нуклеотидов 48
Глава 27. Регуляция и взаимосвязь метаболизма 49
Глава 28. Биохимия печени 49
Глава 29. Водно-электролитный обмен 52
Глава 30. Биохимия крови 55
Глава 31. Биохимия почек 57
Глава 32. Особенности метаболизма в нервной ткани 58
Глава 33. Биохимия мышечной ткани 59
Глава 34. Биохимия соединительной ткани 60
В. В. Лелевич
Биологическая химия
Список сокращений
АДГ – антидиуретический гормон (вазопрессин)
АДФ – аденозиндифосфорная кислота, аденозиндифосфаты
АКТГ – адренокортикотропный гормон
АлАТ – аланинаминотрансфераза
АМФ – аденозинмонофосфат
цАМФ – циклический аденозин-3',5'-монофосфат
АсАТ – аспартатаминотрансфераза
АТФ – аденозинтрифосфорная кислота
АТФ-аза – аденозинтрифосфатаза
АХАТ – КоА-холестеролацилтрансфераза
ГАМК – γ-аминомасляная кислота
ГДФ – гуанозиндифосфат
ГТФ – гуанозинтрифосфат
ДНК – дезоксирибонуклеиновая кислота
ДОФА – диоксифенилаланин
ДФФ – диизопропилфторфосфат
ИМФ – инозинмонофосфат
КоА – кофермент (коэнзим) А
КоQ – кофермент (коэнзим) Q
ЛДГ – лактатдегидрогеназа
ЛП – липопротеины
ЛПВП – липопротеины высокой плотности
ЛПЛ – липопротеинлипаза
ЛПНП – липопротеины низкой плотности
ЛПОНП – липопротеины очень низкой плотности
ЛППП – липопротеины промежуточной плотности
ЛХАТ – лецитинхолестеролацилтрансфераза
МАО – моноаминооксидаза
ПОЛ – перекисное окисление липидов
ПЦР – полимеразная цепная реакция
РНК – рибонуклеиновая кислота
мРНК – матричная РНК
рРНК – рибосомальная РНК
тРНК – транспортная РНК
СТГ – соматотропный гормон
ТАГ – триацилглицеролы
ТДФ – тиаминдифосфат
ТТГ – тиреотропный гормон
УДФ – уридиндифосфат
УТФ – уридинтрифосфат
ФАФС – 3-фосфоаденозин-5-фосфосульфат
ХМ – хиломикроны
ЦНС – центральная нервная система
ЦТД – цепь тканевого дыхания
ЦТК – цикл трикарбоновых кислот, цикл Кребса
Глава 1. Введение в биохимию
Биологическая химия – наука, изучающая химическую природу веществ, входящих в состав живых организмов, превращения этих веществ (метаболизм), а также связь этих превращений с деятельностью отдельных тканей и всего организма в целом.
Биохимия – это наука о молекулярных основах жизни. Существует несколько причин тому, что в наши дни биохимия привлекает большое внимание и быстро развивается.
1. Во-первых, биохимикам удалось выяснить химические основы ряда важнейших биохимических процессов.
2. Во-вторых, обнаружены общие пути превращения молекул и общие принципы, лежащие в основе разнообразных проявлений жизни.
3. В-третьих, биохимия оказывает все более глубокое воздействие на медицину.
4. В-четвертых, быстрое развитие биохимии в последние годы позволило исследователям приступить к изучению самых острых, коренных проблем биологии и медицины.
В истории развития биохимических знаний и биохимии как науки можно выделить 4 периода.
I период – с древних времен до эпохи Возрождения (XV век). Это период практического использования биохимических процессов без знаний их теоретических основ и первых, порой очень примитивных, биохимических исследований. В самые отдаленные времена люди уже знали технологию таких производств, основанных на биохимических процессах, как хлебопечение, сыроварение, виноделие, дубление кож. Использование растений в пищевых целях, для приготовления красок, тканей наталкивало на попытки понять свойства отдельных веществ растительного происхождения.
II период – от начала эпохи Возрождения до второй половины 19 века, когда биохимия становится самостоятельной наукой. Великий исследователь того времени, автор многих шедевров искусства, архитектор, инженер, анатом Леонардо да Винчи провел опыты и на основании их результатов сделал важный для тех лет вывод, что живой организм способен существовать только в такой атмосфере, в которой может гореть пламя.
В этот период следует выделить работы таких ученых, как Парацельс, М. В. Ломоносов, Ю. Либих, А. М. Бутлеров, Лавуазье.
III период – со второй половины 19 века до 50-х годов 20 века. Ознаменован резким увеличением интенсивности и глубины биохимических исследований, объема получаемой информации, возросшим прикладным значением – использованием достижений биохимии в промышленности, медицине, сельском хозяйстве. К этому времени относятся работы одного из основоположников отечественной биохимии А. Я. Данилевского (1838–1923), М. В. Ненцкого (1847–1901). На рубеже 19 и 20 веков работал крупнейший немецкий химик-органик и биохимик Э. Фишер (1862–1919). Им были сформулированы основные положения полипептидной теории белков, начало которой дали исследования А. Я. Данилевского. К этому времени относятся работы великого русского ученого К. А. Тимирязева (1843–1920), основателя советской биохимической школы А. Н. Баха, немецкого биохимика О. Варбурга. В 1933 г. Г. Кребс подробно изучил орнитиновый цикл образования мочевины, а 1937 г. датируется открытие им же цикла трикарбоновых кислот. В 1933 г. Д. Кейлин (Англия) выделил цитохром С и воспроизвел процесс переноса электронов по дыхательной цепи в препаратах из сердечной мышцы. В 1938 г. А. Е. Браунштейн и М. Г. Крицман впервые описали реакции трансаминирования, являющиеся ключевыми в азотистом обмене.
IV период – с начала 50-х годов 20 века по настоящее время. Характеризуется широким использованием в биохимических исследованиях физических, физико-химических, математических методов, активным и успешным изучением основных биологических процессов (биосинтез белков и нуклеиновых кислот) на молекулярном и надмолекулярном уровнях.
Вот краткая хронология основных открытий в биохимии этого периода:
1953 г. – Дж. Уотсон и Ф. Крик предложили модель двойной спирали строения ДНК.
1953 г. – Ф. Сенгер впервые расшифровал аминокислотную последовательность белка инсулина.
1961 г. – М. Ниренберг расшифровал первую "букву" кода белкового синтеза – триплет ДНК, соответствующий фенилаланину.
1966 г. – П. Митчелл сформулировал хемиосмотическую теорию сопряжения дыхания и окислительного-фосфорилирования.
1969 г. – Р. Мерифильд химическим путем синтезировал фермент рибонуклеазу.