Рис. 1.7. Кора головного мозга
1 – лобная доля,
2 – дополнительная моторная кора,
3 – премоторная кора,
4 – первичная моторная кора,
5 – центральная борозда,
6 – сенсорная кора,
7 – теменная доля
Моторная кора организована соматотопически, т. е. активность определенного участка коры приводит к сокращению мышцы, располагающейся в строго определенной области тела (рис. 1.8). При этом мышцы в коре представлены не пропорционально: проекции мышц лица и рук более обширны по сравнению с мышцами туловища. Анализ мозга человека методом позитронно-эмиссионной томографии выявил, что активность нейрональных сетей моторной коры связана с выполняемыми движениями (Дж. Г. Николлс и др., 2008).
Рис 1.8. Представительство мышц в коре головного мозга
1 – глотательных, 2 – языка, 3 – челюстных, 4 – губ, 5 – лица, 6 – глазодвигательных, век, 7 – надбровья, 8 – шеи, 9 – большого пальца, 10 – указательного пальца, 11 – среднего пальца, 12 – безымянного пальца, 13 – мизинца, 14 – ладони, 15 – запястья, 16 – предплечья, 17 – плеча, 18 – туловища, 19 – бедра, 20 – голени, 20 – стоп, 21 – пальцев ног
Результаты регистрации нейрональной активности моторной коры показали строгую зависимость возможности генерации разрядов, их частотных характеристик, а также особенностей временных связей между разрядами активных нейронов от параметров выполняемого двигательного действия.
Оказалось, что часть кортикальных нейронов активна в процессе сгибания, другие же – в процессе разгибания. Одни нейроны активизировались в начале движения, а другие – при его завершении. Частота разрядов нейронов повышалась по мере возрастания мышечного усилия. Траектория движения в пространстве связана с максимальной частотой разрядов определенной группы кортикальных нейронов. Планирование и координация двигательных действий являются весьма сложными процессами, поэтому кроме коры головного мозга в регуляции движений существенное значение имеет активность и других мозговых структур, в частности – мозжечка.
Мозжечок. Функции мозжечка во многом определяются его связями с другими структурами нервной системы. Он обладает массивными проекциями от моторной коры и получает информацию от проприорецепторов, находящихся в мышцах и суставах, а также от рецепторов зрительной и вестибулярной сенсорных систем. Мозжечок участвует в регуляции равновесия и контроле положения тела. В специальных исследованиях была доказана роль мозжечка в инициации и исполнении планируемых двигательных действий.
Мозжечок контролирует рефлексы, вызываемые активацией мышечных веретен, посредством чего достигается плавность сокращения скелетных мышц. Важное значение имеет интегративная деятельность мозжечка по сравнению достигнутого двигательного результата с планируемым и внесению в случае установления дисбаланса (несоответствия) соответствующих коррекционных поправок. В качестве примера можно рассмотреть такое произвольное движение, как удар по футбольному мячу (рис. 1.9).
Управляющие нервные импульсы из высших моторных центров передаются через латеральные и медиальные пути к соответствующим мышцам и активируют их. Импульсы также одновременно посылаются в мозжечок. В процессе удара проприорецепторы (мышечные веретена, сухожильные и суставные рецепторы) посылают сигналы о параметрах сокращения рабочих мышц обратно в мозжечок. Нейрональные сети мозжечка сравнивают полученную от проприорецепторов информацию с планируемым результатом и, если достигнутый результат не соответствует планируемому, направляют коррекционные импульсы в моторную кору. В таком случае высшие моторные центры вносят поправку в выполняемое движение или корректируют программу последующего повторного выполнения удара по мячу.
Рис. 1.9. Пример интегративной деятельности мозжечка 1 – нисходящий сигнал из моторной коры в мозжечок,
2 – нисходящий сигнал по пирамидальному тракту,
3 – нисходящий сигнал от мотонейронов к мышцам,
4 – афферентный проприорецептивный сигнал к мозжечку
Базальные ганглии. Базальные ганглии представляют собой скопление групп нейронов, объединенных в крупные ядра. Они находятся в белом веществе, рядом с дальними слоями коры больших полушарий. Базальные ганглии состоят из хвостатого ядра и скорлупового ядра, которые имеют множественные входы от нейронов, располагающихся в коре головного мозга. Нейрональная активность базальных ганглиев тормозит нейроны таламокор-тикального пути до момента поступления из моторной коры сигнала отмены. В соответствии с современными представлениями, базальные ганглии участвуют в инициации движений, поддержании позы и мышечного тонуса (К.Б. Шаповалова, 2015).
Энграммы. Многократно повторяемое движение заучивается и хранится в головном мозге в виде энграммы. В основе формирования энграмм лежат функциональные и структурные изменения нейронов и синапсов мозга, вызываемые систематически выполняемыми двигательными действиями. При необходимости энграмма реализуется в соответствующем движении. В то же время энграмма конкретного движения может быть извлечена из памяти человека и использована при осуществлении других двигательных действий.
Энграммы чрезвычайно быстрых движений хранятся в моторной зоне головного мозга и квалифицируются как двигательные программы. Они могут осуществляться без обратной сенсорной связи. Энграммы, хранимые в сенсорной области головного мозга, реализуются в медленных двигательных действиях при участии обратной афферентной информации.
Глава 2
Структура и функции нервно-мышечной системы
Знания о строении и функциях нервно-мышечной системы способствуют пониманию процессов, лежащих в основе развития силовых возможностей человека. В конечном итоге такие знания позволяют более осознанно и целеустремленно подходить к планированию и организации тренировочного процесса, нацеленного на развитие силовых способностей лиц разного пола и возраста.
Нервно-мышечный аппарат. Целенаправленная двигательная деятельность обеспечивает взаимодействие организма с внешней средой (Р.С. Персон, 1976; 1987; Ю.Т. Шапков, 1984; В.С. Гурфинкель и др., 1999; J.H. Wilmore, D.L. Kostil, 2004). Функция движения реализуется скелетными мышцами, которые сокращаются в ответ на электрические импульсы, приходящие к ним по длинным отросткам (аксонам) от а-мотонейронов – нервных клеток, располагающихся в передних рогах спинного мозга. Мышцы и иннервирующие их мотонейроны составляют нервно-мышечный аппарат человека. Сократительная деятельность мышц обеспечивает поддержание позы человека, перемещение частей тела относительно друг друга и передвижение человека в пространстве. Мышцы человека представлены в Приложении 1.
Основным морфофункциональным элементом нервно-мышечного аппарата является двигательная единица (ДЕ). ДЕ – это мотонейрон и иннервируемая им группа мышечных волокон. На рис. 2.1 схематически изображено строение ДЕ.
Аксон мотонейрона из спинного мозга проходит в составе периферического нерва до мышцы, внутри которой разветвляется на множество концевых веточек. Каждая концевая веточка заканчивается на одном мышечном волокне, образуя нервно-мышечный синапс. Эфферентные импульсы, идущие по аксону от клетки тела мотонейрона к мышце, активируют все иннервируемые им мышечные волокна. Поэтому ДЕ функционирует как единое морфофункциональное образование.