Игорь Дмитриевич Новиков - Куда течет река времени стр 9.

Шрифт
Фон

В заключение этого раздела приведем "классическое" описание абсолютного ньютоновского времени, данное философом Дж. Локком, с которым И. Ньютон был знаком и на которого его физика оказала огромное влияние. Приводимое ниже описание дано в знаменитом трактате философа "Опыт о человеческом разуме". В этом описании, помимо уже отмеченных выше свойств времени, подчеркивается еще одно - очень важное: математическим образом времени является прямая линия. В отличие от пространства, которое имеет три измерения - длину, ширину и высоту, - время одномерно, это ряд следующих друг за другом событий: "Продолжительность же подобна длине прямой линии, простертой в бесконечность, и не способна создать множественность, разнообразие или форму, но есть общая мера всего сущего, которой одинаково причастны все вещи, пока существуют".

Этот образ времени, как математическая прямая линия, оказался очень важным в дальнейшем развитии наших представлений о мире.

СВЕТ

Игорь Новиков - Куда течет река времени

Когда мы говорили, что во времена И. Ньютона были известны только движения со сравнительно скромными скоростями, то допускали известную неточность. Конечно, если речь идет о движении физических тел, то сказанное справедливо. Однако человечеству изначально был известен процесс, распространяющийся с поистине фантастической скоростью. Речь идет о свете. Что такое свет?

Еще в Древней Греции высказывались мысли о том, что свет состоит из частичек, испускаемых светящимся телом. Так считал Аристотель. Такой же точки зрения придерживался и сам И. Ньютон. Аристотель полагал скорость распространения света бесконечно большой. Так было принято считать вплоть до середины XVII века. Это мнение разделяли великие ученые И. Кеплер, Р. Декарт и другие. Г. Галилей впервые в 1638 году попытался экспериментально определить скорость света. Для этого он поместил фонари на вершинах двух холмов на расстоянии менее одной мили друг от друга. Сначала открывался затвор одного фонаря, и, когда луч света достигал наблюдателя на другом холме, тот открывал затвор своего фонаря. Наблюдатель у первого фонаря должен был измерять время между открытием затвора первого фонаря и увиденной им вспышкой света от второго фонаря. Тем самым измерялось время путешествия света туда и обратно.

Однако никакого запаздывания в приходе света обнаружено не было, и Г. Галилей заключил, что если свет "распространяется и не мгновенно, то необыкновенно быстро". Конечно, тех приспособлений, которые использовал исследователь, было явно недостаточно для измерения столь быстрого движения.

Датский астроном О. Ремер (1644–1710) оказался первым, кто действительно измерил скорость света. Дело обстояло следующим образом. В середине XVII века итальянский астроном Дж. Кассини, прославившийся точными наблюдениями планет с помощью больших телескопов, составил таблицы движения спутников Юпитера, открытых Г. Галилеем. Дальнейшие исследования показали, что предвычисленные моменты попадания ближайшего к Юпитеру спутника Ио в тень, отбрасываемую планетой, не всегда совпадают с данными наблюдений. В те периоды, когда Земля, двигаясь вокруг Солнца, находится дальше всего от Юпитера, моменты затмений запаздывают по сравнению с вычисленными почти на 22 минуты. Когда же наблюдения проводятся при минимальном удалении Земли от Юпитера, запаздывания нет.

Узнав об этом, О. Ремер в 1676 году объяснил задержку тем, что свету надо 22 минуты, чтобы пересечь орбиту Земли. Размер орбиты Земли к тому времени был определен достаточно точно. Поделив поперечник земной орбиты на 22 минуты, О. Ремер получил первую численную оценку скорости света - около 214 000 км/с. Как выяснилось позже, значение скорости, полученное астрономом, примерно на треть меньше истинного ответа.

Так впервые было показано, что свет распространяется в пространстве отнюдь не мгновенно, а с конечной, хотя и очень большой, скоростью. Только в середине XIX века скорость света была измерена не с помощью астрономических наблюдений, а непосредственно в земных экспериментах. Эти опыты, явившиеся, по существу, сильно усовершенствованными опытами Г. Галилея, были выполнены французскими учеными И. Физо, Л. Фуко и М. Корню. Их эксперименты, проводившиеся в разное время и постепенно совершенствовавшиеся, давали величину скорости света, близкую к 300 000 км/с. В конце 70-х годов прошлого века проблемой измерения скорости света занялся замечательный американский физик-экспериментатор А. Майкельсон (1852–1931). Выполненные им тогда опыты дали для измеряемой скорости 299 910 км/с.

А. Майкельсон продолжал интересоваться этой проблемой всю жизнь. С течением времени становилось все более очевидно, насколько фундаментальную роль играет скорость света в структуре законов, управляющих нашим миром. Заключительная серия опытов по определению скорости света под его руководством была начата в 1929 году. По свидетельству его дочери, в последние дни жизни в мае 1931 года он, всемирно известный физик-экспериментатор, лауреат Нобелевской премии, с нетерпением ждал известий об окончательных результатах экспериментов: "Седьмого мая Пис (сотрудник А. Майкельсона. - И. Н.) пришел к Майкельсону с последними цифрами о новом определении скорости света: 299 774 километра в секунду, - писала дочь. - Лицо Майкельсона осветилось совершенно детской радостью. Зная, что ему недолго осталось жить, он попросил Писа подвинуть к нему кресло и открыть блокнот, чтобы он сразу мог начать диктовать. "Измерение скорости света…". Усилие утомило его и, продиктовав первый параграф, он мирно уснул… Утром 9 мая 1931 года Майкельсон умер".

Эти строчки свидетельствуют, каким был один из многих людей, смыслом существования для которых было познание Вселенной и благодаря которым мы так глубоко проникли в ее тайны.

Приведем современное значение скорости света, определенное с помощью атомных часов, - 299 792, 4562 км/с. Возможная ошибка этого значения не превышает 0,2 м/с.

С именем А. Майкельсона связаны эксперименты со светом, приведшие к возникновению специальной теории относительности. Эта теория, созданная А. Эйнштейном уже в начале нашего века, позволила взглянуть на свойства пространства и времени с совершенно новой точки зрения.

Но прежде чем рассказать об экспериментах А. Майкельсона, давайте вернемся на столетие назад, когда физики пытались разобраться в природе света.

Впервые идею о том, что свет имеет волновую природу, высказал чешский ученый Ян Марци в 1648 году. Однако последовательная волновая теория света была создана только тридцать лет спустя голландским физиком Христианом Гюйгенсом. Эта теория непринужденно объясняла многочисленные явления отражения света тонкими пластинками, образование радужных пленок и других явлений интерференции, дифракции и поляризации света, которые теория световых частичек - корпускул объясняла лишь при очень искусственных предположениях или же не объясняла вовсе.

Но, рассуждали физики, если свет - это волны, то они должны распространяться в какой-то среде. Такой средой для световых волн считался эфир - тончайшее, всепроникающее, разлитое во всей Вселенной вещество. Подобно тому, как звук является продольно колеблющимися волнами, распространяющимися в воздухе, так и свет, считал X. Гюйгенс, является продольно колеблющимися волнами, распространяющимися в эфире, заполняющем пространство.

В начале XIX столетия теория световых волн, распространяющихся в мировом эфире, приобретала все большее и большее признание.

Правда, эфир пришлось наделять поразительными свойствами. Эта среда должна была обладать необыкновенно большой упругостью по сравнению с обычной материей, ибо только в этом случае световые колебания в ней могли распространяться с громадной скоростью, которая наблюдалась. С другой стороны она должна была обладать совершенной текучестью, чтобы небесные тела двигались в ней без малейшего сопротивления, как это также наблюдается в действительности.

Но от подобных трудностей легко отмахивались: ведь эфир, в конце концов, не является "обыкновенной материей". Так, в начале XIX века известный английский ученый Т. Юнг писал: "Кроме форм материи, известных под именем твердых, жидких и газообразных тел, есть еще полуматериальные формы, производящие явление электричества и магнетизма, а также эфир".

Современному читателю будет небезынтересно узнать, что Т. Юнг, один из создателей волновой теории света, обладал уникальными способностями. Он в два года научился бегло читать, еще через два года читал наизусть многочисленные стихи, в восьмилетием возрасте уже мастерил физические приборы, затем быстро овладел дифференциальным исчислением, многими языками, среди которых - греческий, арабский, латынь и т, д. Он работал и как врач, и как физик, и как астроном, в конце жизни составлял египетский словарь.

Т. Юнг проделал многочисленные опыты, доказывающие волновую природу света, и дал им исчерпывающее объяснение. Он показал, что световые волны совершают не продольные колебания, как звуковые волны, а поперечные, как колеблются частички жидкости в волнах на поверхности воды.

После трудов Т. Юнга и других ученых волновая природа света считалась доказанной. Теория мирового эфира рассматривалась как одно из самых больших достижений науки XIX века, а существование самого эфира считалось твердо установленным.

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Популярные книги автора