Шаров Дмитрий - Энциклопедия клинической гастроэнтерологии стр 7.

Шрифт
Фон

Глюконеогенезом называется процесс образования глюкозы из источников неуглеводной природы (лактата, глицерина и аминокислот). Этот источник синтеза глюкозы функционирует в печени и корковом веществе почек. В случае голодания в организме наблюдается мобилизация запасенных в жировой ткани триглицеридов путем их гидролиза до глицирина и жирных кислот. Жирные кислоты поставляются в другие ткани, где используются в качестве субстратов дыхания. Глицерин транспортируется в печень и почки, где играет роль предшественника глюконеогенеза.

С обменом углеводов связан синтез глюкуроновой кислоты, необходимой для конъюгации плохо растворимых веществ и образования смешанных полисахаридов.

Жировой обмен печени лежит в основе таких процессов, как синтез жирных кислот из ацетил-КоА, этерификация жирных кислот и запасание триглицеридов, секреция триглицеридов в кровь в форме липопротеидов очень низкой плотности, синтез фосфолипидов и эфиров холестерина, липолиз триглицеридов, окисление жирных кислот и образование кетоновых тел.

Печень и жировая ткань обусловливают запасание триглицеридов (жирных кислот). При необходимости триглицериды печени используются другими тканями – они поступают в кровь либо в виде липопротеидов очень низкой плотности, либо в форме кетоновых тел.

Печень обладает способностью извлекать из кровотока жирные кислоты плазмы, которые затем подвергаются этерификации или окислению с образованием с образованием соответственно триглицеридов и кетоновых тел.

Катаболизм жирных кислот осуществляется путем бета-окисления, в процессе которого происходит активирование жирной кислоты с участием коэнзима А и АТФ.

Освобождающийся ацетилкоэнзим А подвергается окислению в митохондриях, в результате чего клетки снабжаются энергией.

Под термином кетоновые тела подразумевают ацетоуксусную кислоту, оксимасляную кислоту и ацетон. Ацетоуксусная и оксимасляная кислоты играют существенную роль в поддержании энергетического гомеостаза для мышц и мозга.

При сахарном диабете компенсаторно усиливается мобилизация жиров с образованием большого количества ацетил-КоА. В то же время вследствие нарушения углеводного обмена происходит уменьшение образования оксалатацетата, при помощи которого ацетил-КоА включается в цикл Кребса и окисляется до углекислого газа и воды. Накопление большого количества ацетил-КоА приводит к увеличенному образованию ацето-ацетил-КоА и в результате значительному увеличению количества ацетона, ацетоуксусной кислоты и бета-оксимасляной кислоты, которые выделяются с мочой.

Клетки печени постоянно вырабатывают жир. Печень служит местом переработки нейтральных жиров. Из жировых депо током крови они доставляются в печень, где используются на образование фосфолипидов при наличии азотистых оснований и активной фосфорной кислоты. Из жирных кислот, глицерина, фосфорной кислоты, холина и других оснований печень синтезирует составные части клеточных мембран – фосфолипиды.

Чтобы жир выделился в кровь, он должен быть переведен в водорастворимую форму. Это происходит с помощью образования липопротеидов – частиц, в середине которых находится жир, а снаружи – водорастворимая фосфолипидная оболочка.

Синтез фосфолипидов протекает при участии витаминов В6, В12, фолиевой кислоты. При недостатке АТФ и азотистых оснований или веществ, способствующих их синтезу (холина, серина, витамина В12), печеночные клетки переполняются жиром. Если жир не будет выделяться в кровь, он накапливается в гепатоцитах и вызывает их повреждение (жировую инфильтрация или жировой гепатоз).

90 % холестерина синтезируется в печени и кишечнике. Холестерин является в свою очередь составной частью плазмы крови и используется в качестве составной части кортикостероидных гормонов и витамина D. Уровень холестерина обеспечивается синтезом эндоплазматической сетью печени. Его содержание поддерживается в относительно стабильном количестве. В процессе циркуляции холестерин с желчными кислотами попадает в кишечник, где пятая часть его выделяется с калом, а основная часть всасывается и включается в обмен. В печени осуществляется синтез холестерина из ацетил-КоА, количество которого превышает поступление его с пищей. Часть холестерина превращается в желчные кислоты и стероидные гормоны. Другая часть соединяется с жирными кислотами, образуя эфиры холестерина. Избыток холестерина выводится из организма с калом. Нарушения в обмене холестерина, сопровождающиеся его отложением в печеночных клетках, могут привести к фиброзу.

Пигментный обмен представляет собой захват клетками печени из крови билирубина как результат превращения гемоглобина. Гемоглобин содержится в эритроцитах, которые в среднем через 120 дней разрушаются. Гемоглобин трансформируется в билирубин клетками ретикулоэндотелиальной системы печени, костного мозга и селезенки. Стареющие эритроциты удаляются из циркуляции и разрушаются в селезенке, печени и в меньшей степени в костном мозге клетками фагоцитирующих мононуклеаров. Фракция IgG сыворотки содержит аутоантитела против старых эритроцитов, прикрепление которых к эритроцитам приводит к фагоцитозу последних. При этом происходят окисление гемоглобина, разрыв в порфириновом кольце и образование пигмента вердоглобина, из которого затем освобождается железо и образуется пигмент зеленого цвета биливердин. Биливердин преобразуется в пигмент оранжевого цвета билирубин. В кровь поступает так называемый непрямой, неконъюгированный или свободный билирубин. За сутки у человека распадается около 1 % циркулирующих эритроцитов с образованием 100–250 мг билирубина. Билирубин поступает в кровь. Он плохо растворим в воде и легко адсорбируется на белках плазмы крови.

Непрямой билирубин в клетках печени в эндоплазматической сети соединяется с двумя молекулами глюкуроновой кислоты. Образуется комплекс, хорошо растворимый в воде, дающий прямую реакцию с диазореактивами. Это обеспечивает ему переход в желчь и фильтрацию в почках, поскольку непрямой билирубин не проходит через неповрежденный почечный фильтр. Из печеночных клеток растворимый, прямой, связанный (с глюкуроновой кислотой) билирубин поступает в желчные канальцы. В составе желчи по общему желчному протоку билирубин поступает в двенадцатиперстную кишку.

В составе желчи билирубин поступает в двенадцатиперстную кишку как макромолекулярный комплекс (мицелла) с холестерином, фосфолипидами и солями желчных кислот, где под действием ферментов и восстанавливающих микроорганизмов превращается в мезобилиноген. Небольшая часть мезобилиногена (уробилиногеновых тел) всасывается через стенку кишечника в кровь и по воротной вене доставляется в печень, где расщепляется до дипирролов, которые задерживаются печенью и не поступают в общий кровоток. Большая часть мезобилиногена в кишечнике при участии микроорганизмов восстанавливается в стеркобилиноген. В нижних отделах толстой кишки часть стеркобилиногена всасывается через стенку кишечника в кровь и через систему геморроидальных вен попадает в большой круг кровообращения и затем выводится с мочой. Другая часть стеркобилиногена выделяется с калом, сообщая ему цвет и являясь его нормальным пигментом.

При ряде заболеваний, особенно при инфекционных и токсических повреждениях печени, циррозах, наблюдается нарушение в обмене пигментов и изменяется их содержание в крови, моче и кале. Это вызывает возникновение камнеобразования. Кроме того, билирубин является токсическим веществом: увеличение его концентрации в крови и проникновение в другие ткани приводит к их поражению, особенно страдает центральная нервная система. Экскреторная функция печени . Образование и выделение желчи печенью относятся к внешнесекреторной ее функции. Основные органические компоненты желчи – это желчные кислоты, фосфолипиды (лецитин), холестерин и желчные пигменты, которые, всасываясь в кишечнике, постоянно совершают печеночно-кишечный кругооборот.

Желчные кислоты синтезируются из холестерина. Они являются стабилизатором коллоидного состояния желчи. В основе камнеобразования лежит нарушение равновесия между стабилизаторами желчи (желчных кислот и лецитина) и количеством растворенных в ней веществ (карбоната кальция, билирубина и холестерина), поэтому по содержанию образующиеся конкременты делятся на холестериновые, солевые и пигментные.

Желчные кислоты видны под микроскопом в виде мелких блестящих коричневатых или ярко-желтых зернышек, нередко покрывающих в виде аморфной массы все поле зрения.

Жирные кислоты – кристаллы в виде нежных длинных игл или коротких игл (мыла), часто сгруппированных в пучки. Жирные кислоты отщепляются от лецитина желчи под действием фермента лецитиназы, активность которой повышается в присутствии дезоксихолевого натрия, а также бактерий.

Микролиты (микроскопические камни) – темные, преломляющие свет круглые или многогранные образования, по своей компактности отличающиеся от скоплений кристаллов холестерина, а по размерам превышающие печеночный "песок". Они состоят из извести, слизи и лишь небольшого количества холестерина.

В печени образуются две желчные кислоты – холевая (ХК) и хенодезоксихолевая (ХДХК). На конечном этапе желчные кислоты связываются с таурином и глицином, образуя конъюгаты желчных кислот. Неконъюгированные желчные кислоты менее растворимы, а конъюгированные кислоты имеют более низкую константу ионизации, что предотвращает слишком быстрое их всасывание в тонком кишечнике. В результате конъюгированные желчные кислоты всасываются либо в дистальной части тонкого кишечника, либо в проксимальной части толстого кишечника, что является необходимым условием нормального переваривания и абсорбции жиров.

Желчные кислоты в основном тоже реабсорбируются из кишечника и вновь доставляются в печень. Эффективность извлечения желчных кислот из крови, где они соединены с альбуминами, достигает порядка 95 %.

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Скачать книгу

Если нет возможности читать онлайн, скачайте книгу файлом для электронной книжки и читайте офлайн.

fb2.zip txt txt.zip rtf.zip a4.pdf a6.pdf mobi.prc epub ios.epub fb3