Рис. 19.При действии звука на микрофон ток высокой частоты в антенне передатчика изменяется по амплитуде
Что же в это время происходит в передатчике радиостанции? Колебания звуковой частоты, созданные микрофоном и усиленные студийным усилителем 3Ч, подают в так называемый модулятор, входящий в усилитель мощности передатчика, и там, воздействуя на ток высокой частоты генератора, изменяют его амплитуду колебаний. От этого изменяется излучаемая антенной передатчика электромагнитная энергия (см. правые части графиков на рис. 19). Чем больше частота тока, поступающего из радиостудии в передатчик, тем с большей частотой изменяются амплитуды тока в антенне. Так звук, преобразованный микрофоном в электрические колебания звуковой частоты, получает "путевку" в эфир.
Процесс изменения амплитуд высокочастотных колебаний под действием тока звуковой частоты называют амплитудной модуляцией (AM). Изменяемые же по амплитуде токи высокой частоты в антенне и излучаемые ею радиоволны носят название модулированных колебаний радиочастоты. Кроме амплитудной модуляции существует еще так называемая частотная модуляция (ЧМ). При таком виде модуляции изменяется частота, а амплитуда колебаний радиочастоты в антенне радиостанции остается неизменной. Частотную модуляцию применяют, например, для передачи звукового сопровождения в телевидении, в радиовещании на УКВ. В радиовещании на ДВ, СВ и КВ используют только амплитудную модуляцию.
Радиоволны не могут быть обнаружены ни одним органом наших чувств. Но если на их пути встречается проводник, они отдают ему часть своей энергии. На этом явлении и основан прием радиопередач. Улавливание энергии радиоволн приемником осуществляет антенна радиоприемника. Отдавая антенне часть электромагнитной энергии, радиоволны индуцируют в ней модулированные колебания радиочастоты.
В приемнике имеют место процессы, обратные тем, которые происходят в студии и на передатчике радиостанции. Если там звук последовательно преобразуют сначала в электрические колебания звуковой частоты, а затем в модулированные колебания радиочастоты, то при радиоприеме решается обратная задача: модулированные колебания радиочастоты, возбужденные в антенне, приемник преобразует в электрические колебания звуковой частоты, а затем в звук. В простейшем приемнике, работающем только благодаря энергии, уловленной антенной, модулированные колебания радиочастоты преобразуются в колебания звуковой частоты детектором, а эти колебания в звук - головными телефонами.
Но ведь антенну приемника пронизывают радиоволны множества радиостанций, возбуждая в ней модулированные колебания самых различных радиочастот. И если все эти радиосигналы преобразовать в звуки, то мы услышали бы сотни голосов людей, разговаривающих на разных языках. Вряд ли такой радиоприем нас устроил бы.
Разумеется, интересно послушать передачи разных станций, но только, конечно, не все одновременно, а каждую в отдельности. А для этого из колебаний всех частот, возбуждающихся в антенне, надо выделить колебания с частотой той радиостанции, передачи которой хотим слушать. Эту задачу выполняет колебательный контур, являющийся обязательной частью как самого простого так и самого сложного радиовещательного приемника. Именно с помощью колебательного контура ты будешь в следующей беседе настраивать свой первый приемник на сигналы радиостанций разной длины волны.
РАСПРОСТРАНЕНИЕ РАДИОВОЛН
В заключение этой беседы, которая, надеюсь, помогла тебе разобраться в сущности радиопередачи и радиоприема, надо сказать о некоторых особенностях распространения радиоволн. Дело в том, что радиоволны разных диапазонов обладают неодинаковыми свойствами, влияющими на дальность их распространения. Волны одной длины преодолевают большие расстояния, волны другой длины "теряются" за пределами горизонта. Бывает так, что радиосигнал превосходно слышен где-то по ту сторону Земли или в Космосе, но его невозможно обнаружить в нескольких десятках километров от радиостанции.
Чем это объяснить? Что влияет на "дальнобойность" радиоволн разной длины? Земля и окружающая ее атмосфера.
Земля - проводник тока, хотя и не такой хороший, как, скажем медные провода. Земная атмосфера состоит из трех слоев. Первый слой, верхняя граница которого кончается в 10–12 км от поверхности Земли, называется тропосферой. Над ним, километров до 50 от поверхности Земли, второй слой - стратосфера. А выше, примерно до 400 км над Землей, простирается третий слой - ионосфера (рис. 20). Ионосфера играет решающую роль в распространении радиоволн, особенно коротких.
Рис. 20.Пути радиоволн
Воздух в ионосфере сильно разрежен. Под действием солнечных излучений там из атомов газов выделяется много свободных электронов, в результате чего появляются положительные ионы. Происходит, как говорят, ионизация верхнего слоя атмосферы. Ионизированный слой способен поглотать радиоволны и искривлять их путь. В течение суток в зависимости от интенсивности солнечного излучения количество свободных электронов в ионизированном слое, ее толщина и высота изменяются, а от этого изменяются и электрические свойства этого слоя.
Антенны радиостанций излучают радиоволны вдоль поверхности Земли и вверх под различными углами к ней. Волны, идущие вдоль поверхности, называют земными или поверхностными, под различными углами - пространственными. При передаче сигналов ДВ станций используется главным образом энергия поверхностных волн, которые хорошо огибают поверхность Земли. Но Земля, являясь проводником, поглощает энергию радиоволн. Поэтому по мере удаления от ДВ станции громкость приема ее передач постепенно уменьшается, и, наконец, прием совсем прекращается.
Средние волны хуже огибают Землю и, кроме того, сильнее, чем длинные, поглощаются ею. Этим-то и объясняется меньшая "дальнобойность" СВ радиовещательных станций по сравнению с ДВ станциями. Так, например, сигналы радиостанции, работающей на волне длиной 300–400 м, могут быть приняты на расстоянии, в два-три раза меньшем, чем сигналы станции такой же мощности, но работающей на волне длиной 1500–2000 м. Чтобы повысить дальность действия СВ станций, приходится увеличивать их мощность.
В вечернее и ночное время суток передачи ДВ и СВ радиостанций можно слышать на больших расстояниях, чем днем. Дело в том, что излучаемая вверх часть энергии радиоволн этих станций днем бесследно теряется в атмосфере. После же захода Солнца нижний слой ионосферы искривляет их путь так, что они возвращаются к Земле на таких расстояниях, на которых прием этих станций поверхностными волнами уже невозможен.
Радиоволны кopoтковолнового диапазона сильно поглощаются Землей и плохо огибают ее поверхность. Поэтому уже на расстоянии в несколько десятков километров от таких радиостанций их поверхностные волны затухают. Но зато пространственные волны могут быть обнаружены приемниками на расстоянии в несколько тысяч километров от них и даже в противоположной точке Земли. Искривление пути пространственных коротких волн происходит в ионосфере. Войдя в ионосферу, они могут пройти в ней очень длинный путь и вернуться на Землю далеко от радиостанции. Они могут совершить кругосветное путешествие их можно принять даже в том месте, где расположена передающая станция. Этим и объясняется секрет хорошего распространения коротких волн на большие расстояния даже при малых мощностях передатчика.
Но при распространении коротких волн могут образовываться зоны, где передачи КВ радиостанции вообще не слышны. Их называют зонами молчания (см. рис. 20). Протяженность зоны молчания зависит от длины волны и состояния ионосферы, которое в свою очередь зависит от интенсивности солнечного излучения.
Ультракороткие волны по своим свойствам наиболее близки к световым лучам. Они в основном распространяются прямолинейно и сильно поглощаются землей, растительным миром, различными сооружениями, предметами. Поэтому уверенный прием сигналов УКВ станций поверхностной волной возможен главным образом лишь тогда, когда между антеннами передатчика и приемника можно мысленно провести прямую линию, не встречающую по всей длине каких-либо препятствий в виде гор, возвышенностей, лесов. Ионосфера для УКВ подобно стеклу для света "прозрачна". Ультракороткие волны почти беспрепятственно проходят через нее. Поэтому этот диапазон радиоволн используют для связи с искусственными спутниками Земли и космическими кораблями.