Генрих Кардашев - Радиоэлектроника с компьютером и паяльником стр 12.

Шрифт
Фон

Генрих Кардашев - Радиоэлектроника-с компьютером и паяльником

Рис. 14.Транзисторы:

а - внешний вид; б, в - УГО биполярных транзисторовn-р-n и р-n-р типов и их модельные компоненты EWB; г, д - УГО полевых транзисторов с n- и p-каналами и их модельные компоненты EWB

Как уже указывалось выше, транзистор, представляющий собой электрический трехполюсник, включается в каскады в качестве четырехполюсника, поэтому один вывод с неизбежностью становится общим, что и дает название схеме включения. Наиболее распространенной является схема с общим эмиттером. Схемотехника транзисторных цепей с общим эмиттером аналогична схемотехнике ламповых цепей с триодами: эмиттер - катод, база - сетка, а коллектор - анод.

Полевые транзисторы

История изобретения и создания этого класса полупроводниковых приборов достаточно туманна: в разных источниках скупо упоминаются различные люди и даты. Возможно, что это связано с большой разновидностью подобных устройств. Поэтому, не анализируя, перечислим все известные нам факты в хронологическом порядке. В 1925 г. Юлиус Лилленфельд изобрел полевой транзистор с р-n переходом и полевой транзистор с изолированным затвором. В 1939 г. английский ученый О. Хейл получил патент на устройство, в котором электрическое поле изолированного электрода управляло током, протекающим в тонком слое полупроводника. В 1952 г. упомянутый выше Шокли дал теоретическое описание униполярного полевого транзистора. Такие транзисторы, получившие название полевых с управляемым р-n переходом были впоследствии изготовлены Дейси и Россом, которые в 1955 г. также дали аналитическое описание их характеристик. В 1956 г. С. Тешнер (Франция) изобрел одну из разновидностей полевых транзисторов. В 1960 г. М. Атала и Д. Канг предложили использовать структуру металл-окисел-полупроводник в качестве основы для создания особого вида полевых транзисторов. Очевидно, что именно с этих транзисторов, которые стали широко использоваться в интегральных микросхемах, и по-настоящему началась эра полевых транзисторов. Полевые транзисторы не вытеснили биполярные, а лишь удачно дополнили их, так как обладали рядом уникальных особенностей, с которыми можно легко ознакомиться в виртуальных моделях.

Вначале дадим некоторые пояснения терминов и обозначений. Названия этого класса полупроводниковых приборов связаны с их принципом действия. В некоторой области полупроводника (канале, отсюда одно из названий - канальные) протекает ток основных носителей заряда, одного знака отсюда - униполярные транзисторы. Управление значением тока осуществляется поперечным электрическим полем, отсюда другое название - полевые транзисторы (в английской транслитерации - Field Effect Transistor, сокращенно FET). Все эти названия с разных сторон характеризуют один и тот же прибор и являются общеупотребительными.

Все разновидности полевых транзисторов можно, по существу, разделить на два больших класса: полевые транзисторы с управляющим р-n переходом - Junction (плоскостной) FET, или JFET, и полевые транзисторы с изолированным затвором - Insulated (изолированный) Gate (затвор), т. е. Insulated Gate FET, или сокращенно IJFET. Транзисторы последнего типа содержат в своей структуре Металл-Оксид-Полупроводник, отсюда сокращенно МОП или, на английском, Metall-Oxide-Semiconductor FET (MOSFET). Поскольку используемые оксиды (диоксид кремния SiО2) являются частным случаем диэлектрика, то в русском наименовании слово "оксид" меняют на "диэлектрик" и тогда аббревиатура превращается в МДП (соответственно в английском это Insulator и сокращенно MISFET). Выделяют также полевые транзисторы с каналом n-типа на основе арсенида галлия GaAsFET.

Использование комплементарных структур добавляет в русской аббревиатуре в их названии префикс "К": КМОП или в английском "С" (от Complementary): CMOS. Именно последний акроним используется для обозначения энергонезависящей памяти компьютера, выполненной в виде интегральной микросхемы по соответствующей технологии. Данная микросхема хранит все начальные установки конфигурации ПК и, обладая малым потреблением энергии, работает годами без выключения, питаясь от миниатюрного аккумулятора.

В символике УГО полевых транзисторов (см. рис. 14 г, д) присутствует все та же направляющая стрелка, обозначающая электрод, называемый затвором (Gate), два других электрода имеют очевидные названия: исток (Source) - аналог эмиттера, сток (Drain) - аналог коллектора.

В полевом транзисторе с каналом p-типа полярности источников обратны. Поскольку входное сопротивление полевого транзистора составляет сотни мегаом. то не трудно сообразить, что ток, протекающий через затвор, очень мал (составляет единицы наноампер, а для МОП транзисторов даже единицы пикоампер). В отсутствие напряжения на затворе ток через него практически равен нулю. В этом, собственно, и заключается основная особенность полевых транзисторов по сравнению с биполярными, обусловившая их широкое распространение в микроэлектронике.

В отличие от виртуальной электроники, в реальной обращение с МОП- и МДП-транзисторами требует большой осторожности. Дело в том, что большая рабочая чувствительность транзисторов связана с использованием тончайших пленок окислов или диэлектрика. Подобные пленки могут быть разрушены даже такими небольшими статическими зарядами, которые возникают на теле человека. Это приносило массу неприятностей при работе с полевыми транзисторами. Для того чтобы избежать повреждения, МОП-транзисторы обычно поставляются с соединенными вместе выводами с использованием специальной упаковки. Особые меры предосторожности принимаются при их монтаже (заземление рабочего инструмента и руки с помощью металлического браслета на запястье и т. п.). К счастью, новейшие МОП-транзисторы теперь частично защищены с помощью стабилитронов, включенных внутри транзистора между затвором и истоком.

Тем не менее, положительные свойства полевых транзисторов таковы, что именно широкое использование МОП-транзисторов в интегральных микросхемах в свое время революционизировало всю цифровую электронику.

Оптоэлектронные компоненты

В различных электронных устройствах широко используются физические сигналы в виде света в видимом, инфракрасном и ультрафиолетовом участках спектра. В связи с этим существует два вида первичных оптоэлектронных устройств: приемники и излучатели света. В первых происходит преобразование энергии света в электрическую энергию или световой сигнал преобразуется в электрический сигнал (здесь, конечно, тоже происходит преобразование энергии, но важны временные параметры). Во вторых происходит обратное преобразование энергии. Наконец, существуют компоненты, в которых происходит двойное преобразование сигнала (энергии) по схеме: "электричество->свет->электричество".

Многие из рассмотренных выше полупроводниковых устройств в той или иной степени обладают свойствами подобных преобразователей, и их развитие привело к созданию в виде отдельных компонентов с определенными характеристиками.

Работа оптоэлектронных приборов основана на открытиях физиков: Беккереля, Герца, Столетова, Эйнштейна, Басова, Прохорова, Таунса и др.

Фоторезисторы

Фоторезистор включают в цепь последовательно с источником напряжения и резистором нагрузки. За счет внутреннего фотоэффекта под действием света он уменьшает свое сопротивление: фотоны переводят электроны в зону проводимости, в результате чего возрастает концентрация носителей электричества (электронов и дырок) и сопротивление уменьшается. В качестве светочувствительного материала в фоторезисторах используют сульфид или селенид кадмия, которые наносят на изолирующую подложку.

В отсутствие светового потока в фоторезисторах протекает небольшой темновой ток, обуславливающий их темновое сопротивление от 1 до 100 МОм. С ростом светового потока их сопротивление может уменьшиться в 1000 раз.

Фоторезисторы являются сравнительно инерционными приборами: их постоянная времени составляет 10…100 мс.

Основными параметрами фоторезисторов являются: темновое сопротивление и кратность его изменения, рабочее напряжение и ток.

Фотогальванические (солнечные) элементы

Фотогальванический элемент представляет собой источник тока, выполненный на основе р-n перехода в полупроводниковых материалах (кремний). Принцип их действия также основан на внутреннем фотоэффекте, но наличие р-n перехода приводит к разделению зарядов на электродах и, следовательно, к возникновению фото-ЭДС. Для одного элемента величина ЭДС невелика и при токе 50 мА составляет 0,45 В. Для увеличения тока элементы выполняют с большой плоской поверхностью, а для увеличения напряжения соединяют последовательно в батарею. КПД преобразования энергии света в электрическую энергию у них также не высок (15 %), но зато они являются экологически чистыми возобновляемыми источниками электроэнергии.

Фотодиоды

Устройство фотодиода подобно устройству фотогальванического элемента, а использование аналогично фоторезистору или гальваническому элементу.

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке