С осью суточного вращения Земли совпадает малая ось эллипсоида и ось Z, проходящая через северный полюс. Ось X является линией пересечения плоскости экватора и плоскости гринвичского меридиана. Ось Y также лежит в плоскости экватора. Системы спутниковой радионавигации не исключение. Рассмотрим несколько основополагающих идей.
А — местоопределение по расстоянию до спутников. Зная координаты навигационных спутников и умея измерять расстояние до них, определить координаты наблюдателя — дело техники. Например, если мы знаем, что от нас до навигационного спутника, скажем, 11 тыс. км, то это значит, что мы находимся где-то на воображаемой сфере радиусом в 11 тыс. км с центром, совпадающим с этим спутником. Если одновременно с этим расстояние до другого спутника составляет 12 тыс. км, то наше местоположение будет где-то на окружности, являющейся пересечением двух таких сфер. И, наконец, знание дальности до третьего спутника сократит количество возможных точек нашего местонахождения до двух, одна из которых будет находиться где-то далеко в космосе (и мы ее отбрасываем), а другая — на земле, рядом с нами.
Б— измерение расстояния до спутника. Школьная истина гласит: «расстояние есть скорость, умноженная на время движения». Навигационный приемник так и работает. Он измеряет время, за которое радиосигнал доходит от спутника до нас, а затем по этому времени вычисляет расстояние. Главной трудностью при измерении времени прохождения радиосигнала является точное выделение момента его передачи со спутника. Для этого на спутнике и в приемнике в одно и то же время генерируется одна и та же кодовая последовательность. Теперь остается только сравнить время их рассогласования, умножить его на скорость распространения радиоволн, и, казалось бы, дело в шляпе. Однако если спутник и приемник имеют расхождение временных шкал только в одну сотую секунды, то ошибка измерения расстояния составит около 3 тыс. км!
В — совершенная временная привязка. Чтобы избежать таких ошибок, на спутнике устанавливают атомные часы, точность которых составляет наносекунды, а стоимость — сотню тысяч долларов. Иметь такие же часы в приемнике — слишком дорогое удовольствие. Однако можно обойтись и простыми часами, если измерять дальность не до трех, а до четырех спутников. В этом случае четыре неточных измерения (с «расстроенными» часами) позволяют исключить относительное смещение шкалы времени приемника. И вот каким образом. Предположим, часы приемника несовершенны, не сверены с единым временем навигационной системы и отстают от него, например, на полсекунды. Если измерить время прохождения сигнала от четырех спутников и получить неистинные или псевдодальности до них, то окажется, что воображаемые сферы с радиусами, соответствующими этим псевдодальностям, не пересекаются в одной точке. Тогда для уточнения дальностей компьютер приемника прибавляет ко всем измерениям (или вычитает) некоторый один и тот же интервал времени до тех пор, пока не найдет решение, при котором все четыре воображаемые сферы пересекаются в одной точке.
Г — определение положения спутника в космическом пространстве. Чтобы все вышеизложенное успешно выполнялось, необходимо точно знать местоположение каждого навигационного спутника. Для этого, во-первых, спутники запускают на высокие орбиты (около 20 тыс. км), где движение стабильно и прогнозируемо с большой точностью. А во-вторых, незначительные изменения в орбитах постоянно отслеживаются. При этом сведения о местоположении спутника записываются в память бортового компьютера и затем передаются на приемник вместе с кодовой последовательностью.
Д — коррекция задержек сигнала. Как бы совершенна ни была система, есть несколько источников погрешностей, которые очень трудно избежать.