На этом исследования мыльных пузырей не заканчиваются. В 1942 году, в самый разгар Второй мировой войны, еще один замечательный английский физик, лауреат Нобелевской премии Лоуренс Брэгг, задал себе вопрос: «Можно ли искусственно создать кристалл, состоящий не из атомов или молекул, а из огромного количества крошечных мыльных пузырьков?» Ответ ученый получил в эксперименте. Спустя некоторое время Брэггу и его помощникам удалось создать идеальный пузырьковый кристалл (см. фото).
Пузырьки при определенных условиях способны образовать своеобразный пузырьковый кристалл.
Примерно такой же кристалл вы можете создать сами. Для этого вам понадобится обычная тарелка, заполненная мыльной водой, в которую добавлено несколько капель глицерина, игла от шприца, резиновая волейбольная камера и зажим, которым можно регулировать выход воздуха из отростка-соска надутой камеры. Таким зажимом, на худой конец, может послужить даже обычная струбцина.
Когда вы начнете, потихоньку выпуская воздух из соска камеры через иголку (см. схему), опущенную в воду, выдувать серию маленьких воздушных пузырьков диаметром 2–3 мм, то увидите интересную картину.
Добравшись до поверхности, такой пузырек тут же окутывается мыльной пленкой. А когда рядом появляется сосед, то тут же стремится прижаться к нему, постепенно образуя некую сотовую структуру. Вот это и есть простейший пузырьковый кристалл.
Эксперименты Брэгга и его помощников, в свою очередь, подтолкнули других исследователей на совершенствование подобных опытов. Так, скажем, недавно индийские исследователи, использовав одну из солей жирных кислот (а мыло как раз и является одной из жирных кислот) — миристиновокислого натрия, — при ее медленном охлаждении зафиксировали под электронным микроскопом различные стадии кристаллизации раствора. Получились весьма занятные картины (см. фото).
И это не пустяки. Такие эксперименты помогают исследователям лучше разбираться в процессах кристаллизации, например, расплавленных металлов.
Сейчас существует даже целый раздел науки, который полушутя-полусерьезно называют так — пузырьковедение. И хотя многие из «пузырьковедов» стесняются сознаться, что время от времени всерьез занимаются изучением поведения крошечных пузырьков в жидкости, именно благодаря этим «несерьезным» исследованиям ученым удалось решить многие, весьма серьезные проблемы. Например, когда на смену колесным пароходам пришли корабли с гребными винтами, моряки стали жаловаться, что лопасти винтов быстро становятся хрупкими, неведомый вид коррозии буквально пожирает металл.
Мыльная пленка может переливаться всеми цветами радуги.
Схема установки для получения множества маленьких мыльных пузырей.
Исследования показали, что здесь имеет место так называемая кавитация — физическое явление, на которое обратил внимание еще в первой половине XVII века иностранный член Российской Академии наук Даниил Бернулли. Если воду сильно перемешивать, заметил он, то в ней образуются пузырьки воздуха. И когда они схлопываются, то есть лопаются, следует довольно сильный гидравлический удар. Именно эти пузырьки сообща и разрушали лопасти винтов. И ученым с инженерами пришлось немало потрудиться, чтобы снизить влияние кавитации.
А вот пример сравнительно недавний. Когда американцы стали запускать первые ракеты в космос, некоторые из них никак не хотели летать — двигатели их попросту глохли или работали весьма неустойчиво. Причиной тому опять-таки оказались газовые пузырьки, которые образовывались в топливе, вспенивавшемся от вибраций ракеты. И опять инженеры призвали на помощь «пузырьковедов», которые решили эту проблему.
В общем, работы у крошечных пузырьков с каждым годом становится все больше. Так что, пожалуй, прав был знаменитый Марк Твен, сказав однажды: «Мыльный пузырь, пожалуй, самое восхитительное и самое изысканное явление природы».
Множество пузырьков в жидкости.
И. ЗВЕРЕВ
ПРОЛЕТАЯ НАД МЕШКАМИ С СЕЛИТРОЙ… Лет десять тому назад большой шум в самом буквальном смысле этого слова вызвал загадочный взрыв в поле близ городка Сасова Рязанской области. В свое время были высказаны многочисленные гипотезы, предположили даже, что в поле пытался осуществить вынужденную посадку НЛО, но взорвался…
Свою версию предложил инженер-химик из Московского института народного хозяйства имени Плеханова Б. Сидоров. И далее рассказал следующее. Военные самолеты, базирующиеся под Рязанью, в районе Сасова переходят звуковой барьер. И в ту памятную ночь, как рассказывают многие очевидцы, какой-то самолет прошел буквально над крышами, причем грохот был такой, что кое-где даже стекла в окнах полопались. А на том злополучном поле, между прочим, лежало около 50 центнеров удобрения — аммиачной селитры. Вот она и сдетонировала. Ведь не случайно это вещество террористы иногда используют наряду с обычной взрывчаткой.
ЗАЙМЕМСЯ РУКОПРИКЛАДСТВОМ? Уже очень скоро известная присказка, что у сильно занятого человека «рук не хватает», потеряет смысл. О том, чтобы оснастить всех желающих дополнительными руками, позаботилась английская компания Shadow Robot. Уже несколько лет британские специалисты занимались разработкой механической руки и, наконец, объявили о намерении выпускать свое детище для продажи. Созданная ими конечность очень похожа на человеческую кисть, только движется вдвое медленнее. Однако ей уже можно доверить даже очень хрупкие предметы, потому что пальцы Dexterous Hand весьма подвижны и чувствительны — они оснащены двумя сотнями датчиков, сигналы от которых получает компьютер, контролирующий устройство и выдающий команды пневматическим двигателям.
Создатели руки уверены, что их конечность найдет применение в сферах медицинской техники, образования, науки, развлечений, а также пригодится другим разработчикам роботов-андроидов.
ЕЩЕ ОДНА ПРОВЕРКА ЭЙНШТЕЙНА. Можно ли проверить теорию относительности Эйнштейна с помощью грифеля от карандаша? Можно, утверждают физики. Если изготовить из него чрезвычайно прочный материал толщиной в один атом — графен. Этот удивительный материал в прошлом, 2005 году получила группа российских и английских ученых под руководством профессора из Манчестера Андре Гейма, отделив атомарный слой от кристалла графита.
Электроны в графене ведут себя как релятивистские частицы без массы, так называемые фермионы Дирака, которые перемещаются со скоростью около 106 метров в секунду. Авторы работы рассказали, что при воздействии магнитного поля фермионы Дирака приобретают динамическую массу, согласно знаменитому уравнению Эйнштейна Е = mс2. Что, как говорится, и требовалось доказать.
Опасения за будущее Гольфстрима подтвердились — лет через тридцать в Европе может похолодать. Таков смысл сообщения журнала «Nature», основанного на данных научных исследований.