Константин ЕфановАппараты с перемешивающими устройствами
Введение
Монография охватывает почти полностью все проблемы, возникающие при проектировании химических и нефтяных аппаратов с мешалками, применен междисциплинарный подход к проблемам.
Материал монографии направлен на обмен опытом и облегчение работы инженерам-конструкторам аппаратов с механическими перемешивающими устройствами.
В монографии рассмотрены:
теория расчета валов на основе теории колебаний, приведены примеры расчетов и построения эпюр
теория расчета валов методом конечных элементов
теория подбора мешалок, предложен новый подход к подбору мешалки с объединением подходов их химической технологии и проектирования лопастных устройств,
приведен пример технологического расчета аппарата с мешалкой по критериальным зависимостям и модели идеальных реакторов с определением его геометрических размеров и расходов теплоносителей.
приведена информация о большем физическом обосновании расчетов процессов перемешивания методами вычислительной гидродинамики по сравнению с расчетами по критериальным уравнениям и по моделям реакторов идеального смешения,
приведена теория моделей идеальных реакторов, ячеечной модели, оценки степени отклонения от идеального перемешивания,
приведена теория расчета методами вычислительной гидродинамики.
Результатом ознакомления с представленной в работе теорией и умелом ее применении в практике конструирования перемешивающих устройств, будет являться разработка наилучших и оптимальных конструкций химических и нефтяных аппаратов с перемешивающими устройствами. И как следствие, создание в КБ серьезного центра компетенций по проблемам этого оборудования, повышения престижа компании-производителя среди прочих.
__
Посвящается Господу Богу Иисусу Христу!
Благодарность моей маме Татьяне Викторовне, работавшей инженером в нефтяном машиностроении.
Расчет и проектирование валов
Основные требования к аппаратам с мешалками установлены ГОСТ 20680-2002. Аппараты, изготавливаемые по каталогам изготовителей считаются стандартными, аппараты, изготавливаемые по индивидуальному техническому проекту считаются нестандартными. Нестандартные аппараты могут иметь отступления в конструктивных параметрах от ГОСТ 20680.
Мешалки устанавливаются на консольных валах и пролетных валах, имеющих опору в днище аппарата.
Верхняя опора вала состоит из двух разнесенных подшипников, что создает дополнительный пролет. В расчете этот дополнительный пролет учитывается/не учитывается на усмотрение расчетчика.
Самая простая схема верхней опоры вала в состоит в креплении вала в плоском мотор-редукторе и использовании подшипников редуктора в качестве верхней опоры вала [1]:
В этом случае вал уплотняется манжетным кольцом в крышке аппарата, торцовые уплотнения не используются. К недостатку можно отнести отсутствие возможности измерения температуры подшипников и затруднение их обслуживания, ограничения по массе подвешиваемого вала.
Сложные конструкции верхних опор валов реализуются с использованием опорных стоек, например по данным ОСТ 26-01-1225-75ОСТ 26-01-1228-75 «Приводы вертикальные для аппаратов с перемешивающими устройствами. Типы, конструкции и основные размеры»:
Реализация верхней опоры вала с использованием опорной стойки является наиболее технически обоснованным решением. Такое решение аналогично опорным стойкам для полупогружных насосов типа ХП. Стойки мешалок имеют более сложную конструкцию.
В опорной стойке устанавливается торцовое уплотнение с подведенной системой охлаждения (аналогично нефтяным насосам), две подшипника, один из которых выполняет функцию осевого удержания, второй функцию удержания от поворота в плоскости чертежа, соединительную муфту.
Их соединительных муфт предпочтительнее в применении стягивающая валы продольно-разъемная муфта:
Сравнивая конструкции верхней стойки со стойками полупогружных насосов [29], можно отметить, что для аппаратов с мешалками они более сложные.
Нижние опоры однопролетных валов конструктивно оформляют по типу опор по ОСТ 26-01-55-77:
Мощность электродвигателя подбирается на основании расчета по РД 26-01-90-85 «Механические перемешивающие устройства. Метод расчета». Однако, методики, заложенные в этом документе являются устаревшими и мощность следует выбирать по результатам расчета процесса перемешивания методом конечных элементов.
Валы конструктивно выполняются сплошного сечения, ступенчатыми, полыми (из трубы). В необходимых случаях на поверхность вала наносится защита.
Расчет валов на резонанс, прочность и жесткость выполняется по РД РТМ 26-01-7282. Валы вертикальных аппаратов с перемешивающими устройствами, методы расчёта.
Методика РД РТМ 26-07-72-82 вызывает вопросы в части ее корректности.
Расчеты валов на резонанс в сравнении с методикой РД РТМ 26-07-72-82 более обоснованно выполнять напрямую с использованием теории колебаний или методом конечных элементов.
Расчет по теории колебаний может быть автоматизирован применением математических пакетов программирования таких как MathCAD.
Расчет методом конечных элементов является теоретически самым обоснованным методом расчета валов и выполняется в специальном программном пакете. Используемый программный пакет может выступать в роли стандарта по-умолчанию на расчет валов на резонанс.
Расчет валов на резонанс по теории колебаний
Колебания при вращении вала происходят в результате отсутствия равновесия между внутренними силами упругости металла и внешними динамическими нагрузками. При гармоническом колебании отклонение оси вала от прямой происходит по синусоиде, т.е.:
Под степенью свободы понимается определение положения вала относительно системы координат с помощью одной координаты. Этой одной координате соответствует одна мешалка на валу.
Если колебания вала возникают из-за колебаний упругих внутренних сил, колебания являются свободными или собственными. Если под действием внешней силы по закону с заданной периодичностью, то колебания являются вынужденными.
Положительным расчетом вала на колебания является результат, по которому частота собственных колебаний не совпадает и не имеет близкого значения с критической частотой, т.е. с частотой вынуждающей силы.
При расчета по теории колебаний рассчитываются собственные и критические частоты. В случае их совпадения изменяется жесткость вала или устанавливается другая частота вынужденных колебаний.
Изменение жесткости вала связано с изменением статической деформации, которая связана со свободной частотой по формуле:
На резонансной частоте амплитуда вынужденных колебаний неограниченно возрастает при отсутствии внешних сопротивлений:
При наличии ограничителей колебаний, при резонансе амплитуды не превышают какого-либо максимального значения. Для валов мешалок в условиях отсутствия элементов, ограничивающих колебания, важно обеспечить расчетом отсутствие совпадения частот свободных колебаний и резонанса. При разгоне вала до рабочих оборотов, происходит быстрый переход через резонансную частоту, не оказывающий влияния на вал.
Для значений частот, близких к резонансной возникают биения вала. Для случая вала мешалки при отсутствии сопротивлений биению, колебания имеют вид:
Затухающие биения при отходе от частот, близких к резонансным имеет вид:
Для получения формулы вынужденных колебаний с учетом сопротивлений к внешним силам добавляют периодическую возмущающую силу (к внешним силам прибавляется силапрепятствующая движению).
Упругие колебания системы с одной степенью свободы в общем случае (вторые два члена формулы относятся к вынужденным колебаниям):
Уравнения для всех трех приведенных случаев колебаний можно получить из него как частные случаи: