Вторая задумка, реализуемая «под капотом» нашего сайта, совершит революцию в сфере поиска пассивных кандидатов не через вакансию, а по базе hh.ru. Применяется похожая модель, как в случае с рекомендацией резюме, но при этом учитываются поисковые запросы и другие параметры, чтобы поднять вверх наиболее релевантных кандидатов.
О. М.: Теперь, благодаря накопленным за многолетнюю историю компании данным, в рамках сайта можно не просто искать соответствия по словам, но и производить скоринг.
Эта база позволяет еще до непосредственного общения (неважно, по телефону, в офлайне или в чат-боте), по психотипу и другим параметрам, дать ответ, в какой степени совместимы профили кандидата и компании.
Многие стартапы утверждают, что они тоже используют ИИ, нейронные сети. Как HR-специалисту, мало разбирающемуся в этой области, предугадать, не являются ли их обещания качественного результата лишь продуманным маркетингом?
Б. В.: Это может сделать даже неспециалист, потому что ключевым является вопрос о количестве данных, которые используются для построения модели машинного обучения.
Когда провайдер оперирует тысячами или даже десятками тысяч резюме и откликов, этого явно недостаточно. Для сравнения, hh.ru использует миллионы и десятки миллионов пар, чтобы выявить наличие сигналов. В упрощенном виде, для подходящих рекомендаций следует иметь в обучающей выборке похожие вакансии и компании с откликнувшимися и далее приглашенными кандидатами. Речь идет об огромном числе вакансий, резюме и взаимодействий между ними.
Далее необходимо поинтересоваться теми подходами, которые используются в процессе разработки ИИ. Эксперты обычно уточняют наличие ключевых слов, а остальные какая метрика является целевой для обучения моделей, то есть что они оптимизируют.
Например, по отношению к соискателям hh.ru оптимизирует вероятность отклика, а к работодателям вероятность приглашения. Если вам не смогут ответить даже на такой простой вопрос, продолжать разговор о машинном обучении нет смысла.
Третий момент как измеряется точность моделей. Неправильных вариантов два: полное отсутствие такой практики либо (что приходится часто слышать) «наша точность 100 %».
В целом все-таки рекомендую привлечь знающих людей, которые помогут отделить настоящие технологии от тех, которые преподносятся в этом качестве.
О. М.: Нужно внимательно проверять, когда компания вышла на рынок (стартапы чаще всего не имеют доступа к большим массивам данных), на чем она строит машинное обучение и не стремится ли просто поймать хайповую волну. При этом бывает, что новые игроки предлагают по-настоящему интересные решения; пусть там и нет ИИ, свежий взгляд и нестандартные подходы не могут не радовать.
Технологии хороши именно тогда, когда жизнь обычного человека становится проще, и в нашем поиске все сложное спрятано «под капот». В HR не обязательно быть суперпродвинутым айтишником, глубоко разбираться в технических деталях, главное знать, какие решения лучше выбирать и в какой момент их применять.
Есть ли предположения о том, какие инструменты и методологии появятся в HR-сфере в следующем году?
Б. В.: Пока об этом трудно говорить, но точно продлятся и углубятся тренды, связанные с оптимизацией. Очевидно, что продолжится переход от учета к производительности: вместо того чтобы вводить данные, сохранять их, получать ценность просто за счет избавления от ошибок, неточностей, потери кандидатов и т. п., некоторые этапы работы рекрутера и HR в целом автоматизируются.
Пример с чат-ботами для совершенствования процесса отбора показал, что в этом направлении тоже есть возможности для развития и создания новых инструментов. Через несколько лет конечной видится ситуация, когда целый ансамбль систем машинного обучения будет подсказывать соискателям и рекрутерам, на какие вакансии откликаться и кого брать на работу.
Вообще кейсы, связанные с автоматизацией и аналитикой, все чаще возникают в регионах, а не только в Москве и Санкт-Петербурге. В разрезе масштаба предприятий ожидается, что средний бизнес подтянется к крупному, потому что продукты становятся проще и доступнее. Не нужно платить баснословные деньги за внедрение достаточно отдать несколько десятков тысяч рублей и сразу начать использовать облачные ATS-системы.