Игорь А. Мерзляков - Квантовая химия в примерах

Шрифт
Фон

Квантовая химия в примерах


Игорь А. Мерзляков

© Игорь А. Мерзляков, 2022


1. Введение

Теоретические принципы, положенные в основу данной работы, опираются на аналитическое решение уравнения Шрёдингера, которое было детально исследовано в первой книге серии «Путешествие в квантовую механику». Изучая положения по квантовой химии, читатель сможет разобраться в методике, позволяющей осуществить моделирование кристаллических структур, молекул и химических реакций.

Каждый принцип, связанный с предсказанием химических соединений, в этой работе выделен отдельно, поэтому хотелось бы надеяться на то, что данное обстоятельство поможет читателю быстрее освоить предлагаемый к изучению материал.

Со времён, когда жил и работал М. В. Ломоносов, кристаллография получила своё развитие благодаря учёным, формировавшим знания о ней как об отдельной науке. На сегодняшний день исследователи продолжают изучать симметрии в структурах химических веществ, пытаясь решить в общем виде задачу «компактной упаковки шаров», согласно которой шары (аналогично атомам в кристалле) помещаются в ящик, оставляя наименьшее свободное пространство. Цель подобных исследований состоит в том, чтобы выделить основные типы кристаллических структур. Часто для неоднородных структур остаётся открытым вопрос о диаметрах шаров и размерах упаковки, куда они помещаются, поскольку именно диаметр определяет вид атома, а линейные размеры упаковки дают информацию о будущих свойствах кристаллической решётки. Предлагаемая в книге методика является наиболее универсальной с вычислительной точки зрения по сравнению с другими численными алгоритмами поиска структур, вместе с тем результаты моделирования указывают на идентичность построенных теоретически и полученных на практике химических соединений.

В данной книге мы разберём основные методы, с помощью которых можно прогнозировать строение кристаллических структур и молекул, применяя аналитическое решение уравнения Шрёдингера, а также рассмотрим процессы возникновения и протекания химических реакций. Если химическую структуру возможно построить теоретически, тогда следует констатировать, что соответствующие ей кристалл или молекула будут существовать в природе. Смоделировав то или иное химическое соединение, необходимо определить параметры среды, в которых будет существовать исследуемое вещество на практике. В случае, когда нельзя обосновать теоретически структуру химического соединения, тогда вещество не может быть получено на практике даже в самых критических точках-параметрах среды, в которой оно находится.

Контакты для связи: vk.com/garrydipray, iganmer@gmail.com, iganmer@yandex.ru.

Ссылка на программу «Cepreak»: www.vk.com/cepreak

2. Общие сведения из квантовой механики

Из книги «Путешествие в квантовую механику» [1] известны следующие положения:

а) Полную энергию E электрона, определяемую для заданных квантовых чисел nx, ny, nz в трёхмерной декартовой системе координат, можно выразить в виде тождества:



где x,y,z  координаты точек, куда помещается пробный отрицательный заряд (см. раздел 5 [1]), x (-Rx, Rx), y (-Ry, Ry), z (-Rz, Rz), F (x,y,z)  произвольно заданная функция, U (x,y,z)  потенциальная энергия, Rx, Ry, Rz  коэффициенты, определяемые из граничных условий. Величины mx/Rx, my/Ry, mz /Rz в общем случае будут зависеть от функции распределения внутренней энергии u, расположенной в пространстве потенциальных ям (см. раздел 9 «Принцип суперпозиции. Квантовая запутанность. Квантовый компьютер» [1]). Если квантовая система состоит из одной частицы, тогда коэффициент a можно определить из соотношения a=ħ2/ (2M), здесь ħ  приведённая постоянная Планка, M  масса электрона, nx, ny, nz  величины, определяющие дискретные значения полной энергии.

б) Получим выражение для вычисления полной энергии квантовой системы, расположенной в произвольно заданном пространстве потенциальных ям. В рассматриваемом примере потребуем, чтобы синусоидальная функция, входящая в состав решения уравнения Шрёдингера, была построена в сферической системе координат (r,θ,φ), тогда:

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Скачать книгу

Если нет возможности читать онлайн, скачайте книгу файлом для электронной книжки и читайте офлайн.

fb2.zip txt txt.zip rtf.zip a4.pdf a6.pdf mobi.prc epub ios.epub fb3

Популярные книги автора