Благодарности
Прежде всего хотели бы поблагодарить наших супругов Майкла Берковица (Michael Berkowitz) и Хизер Нолис (Heather Nolis). Без них эта книга не появилась бы (не только потому, что Майкл писал первые черновики некоторых разделов, несмотря на то что он профессиональный игрок в бридж, а вовсе не дата-сайентист, и не потому, что Хизер стремилась заполнить половину книги контентом о машинном обучении).
Хотим поблагодарить сотрудников компании Manning, которые помогли нам пройти этот путь, улучшили книгу и вообще сделали ее выход возможным. Особая благодарность нашему редактору Карен Миллер (Karen Miller), которая помогала нам придерживаться графика и координировала работу.
Спасибо всем редакторам, которые читали рукопись на разных этапах и давали неоценимые подробные отзывы. Вот их имена: Бринджар Смари Бьярнасон (Brynjar Smári Bjarnason), Кристиан Таудал (Christian Thoudahl), Даниэль Берец (Daniel Berecz), Доменико Наппо (Domenico Nappo), Джефф Барто (Geoff Barto), Густаво Гомес (Gustavo Gomes), Хагай Люгер (Hagai Luger), Джеймс Риттер (James Ritter), Джефф Ньюман (Jeff Neumann), Джонатан Твадделл (Jonathan Twaddell), Кшиштоф Енджеевский (Krzysztof Jedrzejewski), Малгожата Родацка (Malgorzata Rodacka), Марио Гизель (Mario Giesel), Нараяна Лалитананд Сурампуди (Narayana Lalitanand Surampudi), Пин Чжао (Ping Zhao), Риккардо Маротти (Riccardo Marotti), Ричард Тобиас (Richard Tobias), Себастьян Пальма Мардонес (Sebastian Palma Mardones), Стив Сассман (Steve Sussman), Тони М. Дубицкий (Tony M. Dubitsky) и Юл Вильямс (Yul Williams). Спасибо также нашим друзьям и членам семьи, которые прочитали книгу и внесли свои предложения: Элин Фарнелл (Elin Farnell), Аманда Листон (Amanda Liston), Кристиан Рой (Christian Roy), Джонатан Гудман (Jonathan Goodman) и Эрик Робинсон (Eric Robinson). Ваш вклад помог оформить эту книгу и сделать ее максимально полезной для наших читателей.
Наконец, хотим поблагодарить всех, кто согласился дать нам интервью: Роберт Чанг (Robert Chang), Рэнди Ау (Randy Au), Джулия Силдж (Julia Silge), Дэвид Робинсон (David Robinson), Джесси Мостипак (Jesse Mostipak), Кристен Керер (Kristen Kehrer), Райан Уильямс (Ryan Williams), Брук Уотсон Мадубуонву (Brooke Watson Madubuonwu), Джарвис Миллер (Jarvis Miller), Хилари Паркер (Hilary Parker), Хизер Нолис (Heather Nolis), Сейд Сноуден-Акинтунде (Sade Snowden-Akintunde), Мишель Кейм (Michelle Keim), Рене Теате (Renee Teate), Аманда Касари (Amanda Casari) и Анджела Басса (Angela Bassa). Кроме того, мы благодарны тем, кто участвовал в создании примечаний на протяжении всей книги и предлагал вопросы для интервью в приложении: Вики Бойкис (Vicki Boykis), Родриго Фуэнтеальба Картес (Rodrigo Fuentealba Cartes), Густаво Коэльо (Gustavo Coelho), Эмили Барта (Emily Bartha), Трей Кози (Trey Causey), Элин Фарнелл (Elin Farnell), Джефф Аллен (Jeff Allen), Элизабет Хантер (Elizabeth Hunter), Сэм Бэрроуз (Sam Barrows), Решама Шейх (Reshama Shaikh), Габриэлла де Кьерос (Gabriela de Queiroz), Роб Штамм (Rob Stamm), Алекс Хейз (Alex Hayes), Людамила Джанда (Ludamila Janda), Аянти Дж. (Ayanthi G.), Аллан Батлер (Allan Butler), Хизер Нолис (Heather Nolis), Йерун Янссенс (Jeroen Janssens), Эмили Спан (Emily Spahn), Тереза Иофчиу (Tereza Iofciu), Бертил Хатт (Bertil Hatt), Райан Уильямс (Ryan Williams), Питер Болдридж (Peter Baldridge) и Хлинур Хадльгримссон (Hlynur Hallgrímsson). Все эти люди предоставили ценную информацию, и вместе они знают гораздо больше, чем мы.
О книге
Книга «Data Science для карьериста» поможет вам войти в сферу DS и стать профессионалом. В ней рассказывается том, кто такие дата-сайентисты, как получить необходимые навыки и какие шаги нужно предпринять, чтобы устроиться на работу. После трудоустройства эта книга поможет вам понять, как развиваться в своей должности и стать в итоге частью сообщества Data Science, а также дорасти до уровня старшего специалиста. Прочитав ее, вы станете уверенно смотреть на предстоящий карьерный путь.
Для кого эта книга
Эта книга предназначена для людей, которые еще не начали работать в Data Science, но в перспективе рассматривают такую возможность, а также для тех, кто только начал трудиться в этой сфере. Начинающие специалисты получат навыки, которые необходимы, чтобы стать дата-сайентистами, а джуниоры узнают, как повысить свою экспертность. Многие темы в книге вроде прохождения интервью и обсуждения оффера это полезные ресурсы, к которым стоит возвращаться на любом этапе карьерного пути.
Структура книги
Эта книга разбита на четыре части, посвященные этапам, которые проходит начинающий дата-сайентист. В первой части книги, «Data Science. С чего начать», рассказывается о том, что такое DS и какие навыки нужны для работы в этой сфере:
В главе 1 вы узнаете о функциях дата-сайентиста, а также о различных должностях с аналогичным названием.
В главе 2 представлено пять примеров компаний, в которых трудятся дата-сайентисты, и показано, как культура и тип каждой из них влияют на работу.
Глава 3 описывает различные пути, которые можно выбрать для получения важных для дата-сайентиста навыков.