Анализ катастроф и их связи с конструкционными аспектами требует целенаправленной работы по изучению обстоятельств разрушений, их причин и сопутствующих факторов, выявлению определяющих процессов, оценке параметров и диапазонов их безопасных изменений. Исследования такого плана осуществляются с различных теоретических и концептуальных позиций с использованием различных информационных технологий. Изучается влияние особенностей конструктивного исполнения, технологии изготовления, характера нагрузок и воздействий. Большое внимание уделяется оценке эффективности применения высокопрочных материалов, методов неразрушающего контроля, различных ограничителей нагрузок, живучести конструкций в условиях аварий, проектируемых и запроектных, применяемых методов расчета прочности и ресурса. Обычно исследования этого направления базируются на традиционных методах строительной механики и теориях конструкционной прочности [15].
Особо рассматриваются вопросы механики, физики и химии деградационных процессов, приводящих в связи с необратимыми изменениями и повреждениями в структуре материалов к снижению прочностных характеристик, образованию и росту трещин, а также к катастрофическим отказам конструкций. Характер деградационных процессов и их роль в формировании разрушений существенно зависят от типа технической системы. Например, для баллонов давления и сосудов высокого давления основными причинами считаются механическая усталость, дефектность изготовления и коррозионные процессы в металлических фрагментах конструкции. Следовательно, дефектность конструкции и наличие трещин и расслоений остаются определяющими источниками разрушений.
Другой важной стороной обеспечения качества продукции является разработка и обоснование допустимости специализированных технологий ремонта создаваемых конструкций с учетом специфики структурных и технологических дефектов. Реализация этой проблемы обеспечивает значительное повышение выхода годной продукции в условиях дефицита исходных материалов и высокой стоимости конечной продукции.
В учебном пособии исследуются и разрабатываются вопросы, связанные с технологическими процессами контроля качества, изготовления и ремонта конструкций из композиционных материалов. Широкое применение конструкций из композитов потребовало разработки новых методов и аппаратуры неразрушающего контроля для осуществления непрерывного контроля непосредственно в процессе формирования композиционных материалов и изделий из них. Анализ существующих структурных дефектов в композиционных материалах и технологических дефектов в конструкциях позволяет разработать научно обоснованные технологии ремонта, обеспечивающие требуемую надежность создаваемых изделий.
Глава 1
Неразрушающий контроль параметров процесса изготовления конструкций из композиционных материалов
1.1 Требования, предъявляемые к методам контроля
Обеспечение высокого качества и надежности изделий из КМ невозможно без применения эффективных современных методов контроля на всех стадиях производственного цикла: проектирования (разработка), изготовления, эксплуатации. При этом каждой стадии соответствуют свои методы контроля. Наиболее эффективны неразрушающие физические методы контроля (НФМК) качества, применяемые на стадии как изготовления (обработки, исследования), так и эксплуатации изделий. Следует отметить, что наибольший эффект от НФМК достигается при применении его в мелко- и среднесерийном производстве крупногабаритных изделий, когда возможен сплошной контроль качества. В крупносерийном производстве более эффективны статистические методы выборочного контроля, при этом методы контроля качества подразделяются по количественным, качественным или альтернативным признакам.
К количественным методам контроля относят такие, которые позволяют регистрировать точные численные значения параметров, определяющих качество изделия. Качественные методы позволяют отметить лишь категории, классы (сортность, хорошее, плохое и т. д.), к которым принадлежит контролируемое изделие. В том случае, когда изделия подразделяются на годные или дефектные, осуществляют контроль по альтернативному признаку, что является частным случаем контроля по качественному признаку.
Определение соответствия изделия данным условиям (по размерам, физико-механическим свойствам, структуре материала, состоянию поверхности – шероховатости, наличию тех или иных дефектов и др.) осуществляется путем проведения соответствующих измерений или контроля, поэтому методике контроля отводится исключительная роль.
Основные требования, предъявляемые к контролю, заключаются в следующем.
1. Вероятность того, что доброкачественное изделие будет забраковано, должна иметь некоторое определенное значение, которое будет определяться чувствительностью и точностью применяемых методов и аппаратуры.
2. Вероятность принятия изделия низкого качества (дефектного) должна иметь некоторое определенное значение, зависящее от квалификации контролеров, эффективности применяемых методов и аппаратуры.
3. Применяемый метод или аппаратура должны обеспечить непрерывность проведения контроля технологических процессов.
4. Метод и аппаратура должны обеспечить сплошной контроль всех выпускаемых изделий.
Контроль по своим признакам может быть разрушающий, неразрушающий (неповреждающий), аналитический, метрологический (поверочный). В настоящее время наиболее широкое распространение получили разрушающие и аналитические методы. Основное их достоинство заключается в том, что они дают возможность определить объективные абсолютные параметры материалов и изделий. Такой важный параметр изделия, как прочность, наиболее объективно определяется путем его разрушения с соблюдением режимов нагружения, вида нагрузки и обеспечения условий окружающей среды (температура, влажность).
Аналитические методы в большинстве случаев являются также разрушающими, так как связаны с взятием проб или изготовлением специальных образцов. Они отличаются высокой точностью измерения. Основные недостатки разрушающих и аналитических методов контроля заключаются в следующем:
– не выполняют всех требований, предъявляемых к контролю (требование 4), так как для их выполнения пришлось бы разрушить все изделия;
– не позволяют выявить изменение свойств конкретного изделия при воздействии на него внешних факторов (температуры, нагрузок, влаги и т. д.) в процессе эксплуатации;
– не обеспечивают непрерывности измерений при контроле кинетики или динамики технологических процессов изготовления изделий;
– не дают возможности определить реальную изменчивость свойств материала непосредственно в изделии на различных его участках без вырезки образцов;
– не позволяют выявить внутренние дефекты в материале изделия без его разрезки.
Метрологический контроль служит в основном для контроля (поверки) методов контроля и направлен на определение точности и чувствительности применяемых методов и аппаратуры.
Неразрушающие физические методы контроля (НФМК) в последнее время все более активно начинают применяться в производстве изделий из КМ. Они вполне удовлетворяют всем требованиям, предъявляемым к контролю, и не имеют недостатков, присущих разрушающим и аналитическим методам. В соответствии с ГОСТ 18353-73, принято 10 видов неразрушающего контроля: акустический, капиллярный, магнитный, оптический, радиационный, радиоволновой, тепловой, течеисканием, электрический, электромагнитный (вихревых токов) [18]. Каждый из указанных видов подразделяется на большое количество методов.