Еще Ньютон объяснил, как материальные тела реагируют на иные силы, помимо гравитации. Когда здесь, на Земле, мы что-то толкаем, оно движется, но только пока мы его толкаем. Любое движущееся тело на Земле подвергается воздействию силы трения, которая противостоит его движению. Перестанешь толкать – и сила трения остановит объект. Но без силы трения (подобно планетам в космосе или атомам, из которых состоит все вокруг), согласно Ньютону, тело движется равномерно и прямолинейно, пока не подвергнется воздействию какой-нибудь силы. И тогда, пока сила действует, тело ускоряется, меняет направление или скорость, либо и то, и другое. Чем легче тело или чем больше сила, тем больше в итоге ускорение. Однако если убрать силу, тело снова начнет двигаться равномерно и прямолинейно, но с другой скоростью – с той, которую оно набрало за время, пока ускорялось.
Когда что-то толкаешь, оно толкает тебя в ответ, и сила действия равна по значению и противоположна по направлению силе противодействия. По этому принципу устроена ракета: она выбрасывает вещество из сопла в одном направлении, и сила противодействия толкает ее в другом направлении. Наглядный пример действия этого закона в наши дни – бильярдный стол: шары сталкиваются и отскакивают друг от друга очень по-ньютоновски. И именно такова картина мира, которая следует из ньютоновой механики: картина, в которой шары (или атомы) сталкиваются и отскакивают друг от друга, а звезды и планеты движутся под воздействием тяготения исключительно правильно и предсказуемо.
Все эти представления описаны в фундаментальном труде Ньютона «Начала» («Principia»), опубликованном в 1687 году (полное название великой работы Ньютона в переводе звучит как «Математические начала натуральной философии»). Представление о мире, которое подарил нам Ньютон, иногда называют «заводная Вселенная». Если Вселенная состоит из материальных объектов, которые взаимодействуют друг с другом посредством сил, подчиняющихся подлинно универсальным законам, и если законы, подобные закону действия и противодействия, в точности соблюдаются во всей Вселенной, значит, Вселенную можно считать исполинской машиной, космическим часовым механизмом, который, единожды придя в движение, будет вечно следовать целиком и полностью предсказуемым путем.
Это порождает всякого рода загадки, которые не давали покоя ни философам, ни богословам. Суть проблемы – вопрос свободы воли. Неужели в подобной «заводной» Вселенной предопределено абсолютно все, в том числе и человеческое поведение во всей его многогранности? Было ли предопределено, заложено в законы физики, что совокупность атомов по имени Исаак Ньютон напишет книгу под названием «Начала», которая выйдет в свет в 1687 году? И если Вселенная подобна космическому часовому механизму, кто завел эти часы, кто привел их в движение?
Даже надежные рамки религиозных представлений Европы XVII века несколько пошатнулись от подобных вопросов: казалось бы, логично сказать, что завел часы и привел их в движение именно Бог, однако традиционное христианство предполагает, что человек обладает свободой воли и, таким образом, может по желанию либо следовать учению Христа, либо нет. Мысль, что грешники, в сущности, не имели никакой свободы выбора в своих поступках, а грешили, подчиняясь незыблемым законам, и следовали по пути к вечным мукам, который заложил изначально сам Господь, решительно не вписывалась в сложившееся христианское мировоззрение.
Как ни странно, со времен Ньютона и до ХХ века наука практически не интересовалась идеей начала Вселенной. Считалось, что Вселенная вечна и неизменна, а «неподвижные» звезды просто висят в пространстве. Библейская история о сотворении мира, в которую в XVII веке ученые верили, как все, была применима только к нашей планете Земля или разве что к семейству планет вокруг Солнца – Солнечной системе – но не к Вселенной в целом.
Ньютон полагал, как выяснилось, ошибочно, что неподвижные звезды могут находиться на своих местах в пространстве вечно, если Вселенная бесконечно велика, поскольку сила тяготения, влияющая на каждую звезду в отдельности, одинакова во всех направлениях. На самом деле подобная конструкция крайне нестабильна. Достаточно легчайшего отклонения, и идеально равномерное распределение звезд приведет к мощному притяжению в том или ином направлении, и звезды придут в движение. А как только звезда двинется в сторону любого источника гравитационной силы, расстояние до источника сократится, сила увеличится – в полном соответствии с законом обратных квадратов Ньютона. То есть стоит звездам прийти в движение, и сила, приводящая к неоднородности, начнет возрастать, поэтому звезды продолжат движение с ускорением. Статическая вселенная вскоре схлопнется под воздействием силы гравитации. Но это стало понятно только после того, как Эйнштейн разработал новую теорию гравитации – теорию, которая, более того, заключала в себе предсказание, что Вселенная определенно не может быть статической и, вероятно, на самом деле не схлопывается, а расширяется.
* * *
Альберту Эйнштейну, как и Ньютону, принадлежит множество научных достижений. И главным трудом его жизни, как у Ньютона, стала теория гравитации – ОТО. Насколько важной оказалась его теория для современного понимания Вселенной, можно судить по тому, что специальная теория относительности (СТО) – та, в результате которой была выведена знаменитая формула E = mc2, – это лишь довольно малая часть работы. Однако СТО, опубликованная в 1905 году, стала главной составляющей нового понимания Вселенной. Но прежде чем перейти к этому, остановимся хотя бы ненадолго на основных чертах специальной теории.
Эйнштейн разработал СТО, чтобы решить задачу, сформулированную физикой XIX века. Великий шотландский физик Джеймс Клерк Максвелл вывел уравнения, описывающие поведение электромагнитных волн. Вскоре уравнения Максвелла были скорректированы для описания поведения радиоволн, открытых в 1888 году. Однако Максвелл обнаружил, что уравнения автоматически дают ему определенную скорость,[7] которая определяется как скорость распространения электромагнитных волн. Оказалось, что особая скорость, следующая из уравнений Максвелла, – это в точности скорость света, которую физики к тому времени уже измерили. Следовательно, свет – тоже разновидность электромагнитной волны, подобно радиоволнам, но с меньшей длиной волны (то есть с более высокой частотой). А еще эти уравнения говорили, что свет (как и другие виды электромагнитного излучения, в том числе радиоволны) всегда распространяется с одной и той же скоростью.
Это противоречит нашим представлениям о движении предметов в быту. Если человек, стоящий напротив вас, легким движением бросит вам мяч, вы без труда его поймаете. Если этот человек будет двигаться в вашу сторону в автомобиле со скоростью 80 километров в час и таким же легким движением бросит вам мяч из окна, мяч помчится на вас со скоростью 80 километров в час плюс скорость броска. Так что вас сильно удивило бы, если бы мяч, легким движением выброшенный из машины, долетел бы до вас всего лишь с небольшой скоростью броска, без прибавки скорости автомобиля. Однако со световыми импульсами именно так и происходит. Подобным же образом, если машину, которая едет по прямой дороге со скоростью 80 километров в час, обгоняет машина, которая едет со скоростью 90 километров в час, то вторая машина движется относительно первой со скоростью 10 километров в час. Иными словами, скорость относительна. Но если вас обгонит световой импульс, и вы измерите скорость, с которой он пролетает мимо, окажется, что эта скорость равна скорости светового импульса, который пролетает мимо вас, когда вы стоите неподвижно.