Именно в это время я заразился астрономией и познакомился с Галилеем. Чем больше я учился, тем сильнее была моя жажда знаний. Вскоре я узнал достаточно, чтобы мои знания стали опасными. Прочитав о том, что католическая церковь обвинила Галилея в ереси и заставила «от чистого сердца и с непритворной верою отречься, проклясть и возненавидеть» свое учение о гелиоцентрической системе мира, я был глубоко удручен (особенно после того, как узнал, каким образом инквизиция добивалась таких «чистосердечных» отречений). Как мог Ватикан угрожать ему пытками только из-за его научных взглядов?
Даже в 1984 году, когда состоялось мое знакомство с Галилеем, через три с половиной столетия после позорного суда, он так и не был официально реабилитирован Церковью. Это переполнило мою чашу. Галилей стал для меня не просто примером для подражания, а божеством, разговаривавшим со мной через века. Его слова стали моим кредо: «Я не считаю должным верить в то, что тот же Бог, который одарил нас чувствами, разумом и пониманием, намеревался заставить нас отказаться от их использования, а знания, которые мы способны получить с их помощью, дать нам каким-то иным путем»[16]. Теперь я верил в науку, и только в науку. Вскоре я отказался от должности мальчика-алтарника. Мне не нужен был Отец на небесах; в конце концов, я прекрасно обходился без отца на Земле.
На протяжении следующих десяти лет я был убежденным атеистом и гордился этим. Наука была единственным, что имело для меня значение. Я хотел знать о природе все, что только возможно. Таким образом, в возрасте 17 лет я оказался на физическом факультете Университета Кейс Вестерн Резерв, а окончив его в 1993 году, отправился в Университет Брауна, чтобы получить докторскую степень в области экспериментальной космологии.
Хотя мы, космологи, и обладаем здоровым самомнением, наши научные эксперименты не подразумевают создания и разрушения вселенных. Мы изучаем космос с помощью новейших телескопов, которые сами же изобретаем и строим. Будучи аспирантом, я работал в лаборатории, где занимались созданием телескопов с использованием самых передовых технологий – сверхчувствительных датчиков, работающих при сверхнизких температурах. Я был в восторге. Мне платили (хотя и немного) за любимое дело – создание новейших телескопов, которые, возможно, позволят ответить на главный вопрос: как возникла наша Вселенная? Но меня мучил еще один вопрос: может ли простой аспирант внести вклад в действительно значимое научное открытие?
Вскоре выяснился ответ – «да». Через месяц после моего пребывания в Университете Брауна, были объявлены лауреаты Нобелевской премии по физике 1993 года. Половина премии досталась молодому астрофизику Расселу Алану Халсу. Будучи 23-летним аспирантом, он вместе со своим научным руководителем Джо Тейлором открыл новый тип пульсаров. Это был так называемый «двойной пульсар» – у космического радиомаяка, располагающегося в 24 000 световых лет от Земли, есть сосед. Орбита этой двойной системы постепенно уменьшается. Халс и Тейлор доказали, что характер этого уменьшения хорошо согласуется с темпами потери энергии, обусловленными испусканием объектами гравитационных волн, – в полном соответствии с тем, что Эйнштейн предсказал больше полувека назад. Мальчишка чуть старше меня сумел сделать столь значимое научное открытие! Я был воодушевлен и мечтал совершить нечто подобное.
Прошедшее несовершенное время
Каждый из нас хотя бы раз задавался вопросом: что, если бы я мог вернуться в прошлое? Что бы я сделал иначе, что изменил? И что, если бы это не улучшило, а ухудшило мою жизнь в настоящем? Пока мы не умеем путешествовать в прошлое. Может быть, это и к лучшему: довольно трудно жить, когда знаешь, что будет завтра… и послезавтра…
Над этими вопросами размышляли мы с коллегами по лаборатории, занимаясь охлаждением наших датчиков до сверхнизких температур. И хотя мы знали, что не можем вернуться назад в прошлое, теоретически время можно остановить, по крайней мере в микроскопическом масштабе. Для этого требуется создать условия, которых нет даже на Южном полюсе, а именно температуру, равную абсолютному нулю. То, что мы называем температурой объекта, определяется коллективным движением всех его атомов. Теоретически можно охладить атомы до такой степени, когда их движение полностью прекратится. Это происходит при абсолютном нуле по шкале Кельвина, что соответствует –273 °С (–460 °F). В таком состоянии атомы «впадают в анабиоз» – и время для них словно останавливается.
Некоторые утверждают, что время, как и температура, эмерджентное[17] явление, т. е. его можно толковать только в связи с движением. Когда я впервые узнал об абсолютном нуле, будучи начинающим аспирантом, то задался вопросом: возможно, у времени тоже было начало? Об эмерджентной природе температуры стало известно лишь тогда, когда появились криогенные технологии, позволяющие достигать максимально низких температур, так, может быть, и о времени мы узнаем больше, если изобретем нужную машину? К счастью, у нас, астрономов, уже есть такие устройства – телескопы. Несмотря на то что свет движется с чрезвычайно высокой скоростью, он не перемещается мгновенно, а преодолевает определенное расстояние за определенный отрезок времени. Следовательно, когда вы видите объект, находящийся от вас на большом расстоянии, вы видите его не таким, какой он есть «сейчас», а таким, каким он был, скажем, восемь минут назад, если это Солнце, или 13,82 млрд лет назад, если это космический микроволновый фон. Но даже реликтовое излучение не переносит нас в самое начало. Для этого нужен особый телескоп, способный видеть гравитационные волны. Каким образом? Вскоре я вам объясню. Если мы построим такой телескоп, то сможем заглянуть в начало начал, когда возникло само время, а быть может, еще дальше.
В общежитии Брауновского университета мы делили комнату с общительным иностранцем Томасом, приехавшим в Соединенные Штаты изучать театральное искусство. Но существовала и другая, более важная причина: он хотел быть поближе к своему биологическому отцу. Как и у меня, родители Томаса развелись, когда он был совсем ребенком. В студенческие годы он помирился с отцом, и между ними установились близкие отношения. Меня восхищало то, как они дружны, как подолгу разговаривают по телефону, как вместе проводят каникулы. Казалось, Томас искренне простил своему старику вполне обоснованные, на мой взгляд, обиды. «Знаешь, это как тяжелая ноша, – сказал он. – От тебя зависит, освободишься ты от нее или будешь тащить дальше». Однажды Томас, зная о моем прошлом, сказал: «Вот ты изучаешь рождение Вселенной… а сам не знаешь даже половины истории собственного рождения!»
Его слова поразили меня. Я прожил столько лет вдали от своего биологического отца, что убедил себя в том, что он мне вовсе не нужен. Но к 1994 году мое любопытство взяло верх. Я знал, что мой отец, Джим Акс, был профессором математики в Университете штата Нью-Йорк в Стоуни-Брук. Чтобы узнать, чем именно он занимался, я отправился в университетскую библиотеку. Наверное, он изучал что-то настолько непостижимое и нудное, думал я, что этим можно лечить от бессонницы.
Но меня ожидало одно из самых сильных потрясений в моей жизни. Его последние научные работы перед уходом в отставку были посвящены не математике, а физике, причем тем фундаментальным вопросам, которые интересовали меня больше всего: происхождению времени, поведению света, природе материи![18] Оказалось, я не только пошел по стопам отца в выборе научной карьеры, но и каким-то образом унаследовал его интеллектуальные пристрастия.