Симптомы гипераргининемии ужасны: в их числе постепенно усиливающиеся спазмы, эпилепсия и серьезная умственная отсталость. Однако был шанс, что вмешательство на ранней стадии, особенно в случае младшей пациентки, могло предотвратить наиболее тяжелые последствия заболевания. Роджерс и его немецкие коллеги ввели девочкам вирус Шоупа в терапевтических целях, сделав инъекцию больших доз очищенного вируса кроликов прямо в кровоток.
К сожалению, экспериментальная генная терапия Роджерса обернулась разочарованием – и не только для него, но и, что более печально, для его пациентов и их семьи. Инъекции не оказали почти никакого воздействия ни на одну из девочек, а Роджерса массово порицали за процедуру, которую многие его коллеги сочли безрассудной и непродуманной[21]. Дальнейшее исследование показало, что вопреки предположениям Роджерса в вирусе Шоупа даже не содержалось гена аргиназы[22], поэтому он не мог никак быть полезен для лечения гипераргининемии.
Хотя Роджерс больше никогда не предпринимал попыток провести генную терапию, его идея об использовании вирусов в качестве средства доставки генов в клетки – ученые называют такие средства векторами – произвела революцию в биологии. Эксперимент не удался, однако общий принцип Роджерса оказался верным, и перенос генов при помощи вирусов до сих пор является одним из наиболее эффективных известных способов вставки генов в геном клетки – и, следовательно, изменения генетического кода живых организмов.
Вирусы эффективны в качестве векторов благодаря нескольким своим характерным особенностям. Начать с того, что в результате своей эволюции вирусы научились невероятно эффективно проникать в клетки любого типа. С тех пор как на Земле существует жизнь, организмам всех царств – бактериям, растениям, животным и т. д. – приходилось бороться с паразитическими вирусами, единственной целью которых является “взлом” клетки и вставка в нее собственной ДНК, чтобы эта клетка вырабатывала множество новых копий вирусных частиц. На протяжении тысячелетий эволюции вирусы выработали способность использовать практически любое слабое место в клеточной защитной системе и усовершенствовали стратегии “доставки” своего генетического груза внутрь клетки. Вирусные векторы поразительно надежны в качестве инструмента; работающие с ними исследователи могут доставить гены в необходимые клетки с практически стопроцентной эффективностью. Для ученых, которые первыми использовали этот вид терапии, вирусные векторы были чем-то вроде троянского коня.
Вирусы способны не только переносить свою ДНК внутрь клетки, но и обеспечивать ее сохранение там. В 1920–1930-е годы, на заре генетических экспериментов на бактериях, ученые недоумевали по поводу способности бактериальных вирусов возникать словно из ниоткуда и вызывать инфекции. Дальнейшие исследования показали, что эти вирусы могут вносить свой геном в бактериальную хромосому и таиться там до тех пор, пока условия не станут подходящими для интенсивного инфицирования. Ретровирусы – большой класс вирусов, к которым относится, например, вирус иммунодефицита человека (ВИЧ), – проделывают то же самое в организме человека, внося свой генетический материал в геном инфицированных клеток. Из-за этого вредоносного свойства уничтожить ретровирусы чрезвычайно сложно, и они сумели оставить огромный след в наследственности нашего вида. Целых 8 % генома человека – около 250 миллионов “букв” ДНК – это наследие древних ретровирусов, которые поражали наших предков много тысячелетий назад.
Генная терапия с использованием вирусных векторов
За первыми попытками генной терапии в 1960-х последовало быстрое развитие этой научной области, которое происходило благодаря революционной разработке, известной как рекомбинантная ДНК, – это собирательный термин для генетического кода, искусственно созданного в лаборатории. Используя новые биотехнологические инструменты и новые биохимические методы, ученые в 1970-х и 1980-х годах научились вырезать и вставлять фрагменты ДНК в геномы и выделять заданные последовательности генов. Это позволило им вставлять “лечебные” гены в вирусы и удалять опасные гены таким образом, что вирусы больше не вредили инфицированным клеткам. Ученые фактически превратили эти вирусы в нечто вроде тихих снарядов, предназначенных для того, чтобы доставить свой генетический заряд точно в нужную цель – и никуда более.
К концу 1980-х были проведены эксперименты на мышах, и в ходе этих экспериментов перенастроенные ретровирусы успешно вставляли произведенные в лаборатории гены в ДНК животных; теперь предстояло испытать генную терапию в клинических условиях. В это время я работала в Гарварде, проводила там исследования для своей докторской диссертации по биохимии; я помню, как мы с коллегами по лаборатории обсуждали новость о том, что Френч Андерсон и его коллеги из Национальных институтов здравоохранения первыми смогли провести клинические испытания. Они разработали многообещающий вектор, снабженный здоровой копией гена ADA (аденозиндезаминазы). Из-за мутации этого гена возникает недостаточность аденозиндезаминазы – формы ТКИД (тяжелого комбинированного иммунодефицита). Команда Андерсона хотела использовать генную терапию для того, чтобы навсегда включить здоровый ген ADA в состав кровяных телец пациентов, страдающих от ТКИД, – таким образом, чтобы эти клетки смогли вырабатывать недостающий белок. Андерсон и его коллеги надеялись, что это приведет к излечению от болезни.
К сожалению, результаты этого первого клинического испытания оказались не вполне ясными; перестроенный вирус вроде бы не причинил вреда ни одному из двух пациентов, которые его получили, однако и эффективность метода было трудно определить. К примеру, после проведения этой процедуры у обоих пациентов увеличилось количество жизнеспособных иммунных клеток – однако это улучшение могло быть вызвано и другими средствами, которые больные принимали параллельно с проведением генной терапии. Более того, в реальности лишь очень небольшое число клеток получило здоровый ген ADA, а это означало, что вирус, вероятно, не настолько эффективен в качестве средства доставки генов, как надеялись ученые.
Однако за три десятилетия, прошедших со времени этого первого и не слишком убедительного опыта, в области генной терапии происходил феноменальный прогресс. Усовершенствования в конструировании вирусных векторов и методов их доставки в клетки привело к чрезвычайно воодушевляющим результатам генной терапии ADA у десятков больных ТКИД, и коммерческий препарат под названием стримвелис, скорее всего, скоро будет одобрен экспертами[23].
По состоянию на 2016 год было проведено около 2000 испытаний различных видов генной терапии, и список недугов, поддающихся лечению этим методом, значительно расширился: теперь он включает такие моногенные наследственные заболевания, как муковисцидоз, миодистрофия Дюшенна, гемофилия, некоторые виды слепоты, а также все большее число различных сердечно-сосудистых и неврологических недугов. А перспективный метод иммунотерапии рака – при котором клетки, сражающиеся с опухолью, “заряжаются” генами, нацеленными на специфичные для опухолей молекулы, – был назван одним из самых многообещающих прорывов в онкологии и подтверждением того, что генная терапия еще много чего может предложить медицине.