Олег Евгеньевич Царьков - Математическое моделирование исторической динамики стр 14.

Шрифт
Фон

  В точке бифуркации происходит скачкообразное изменение системы, вызваное колебаниям. Она представляет собой переломный, критический момент в развитии системы во времени и пространстве, когда происходят качественные, скачкообразные, внезапные изменения в развитии системы. При бифуркации осуществляется выбор траектории дальнейшего движения, т.е. происходит катастрофа. Множества, характеризующие значения параметров системы на альтернативных траекториях, определяются как аттракторы. В их качестве аттрактора могут выступать состояние равновесия, периодическая траектория и странный аттрактор (хаос). Когда в точке бифуркации происходит катастрофа, систему (или её часть) притягивает один из аттракторов, и она в точке бифуркации может стать хаотической и разрушиться, перейти в состояние равновесия или выбрать путь формирования новой упорядоченности, т.е. выступает в новом качестве.

Как правило, неустойчивость возникает в виде нестандартного воздействия на систему или появлении нового компонента. В точке бифуркации неустойчивость усиливается благодаря колебаниям системы. Подавляемые в устойчивом состоянии, они в результате нелинейных процессов переводят параметры системы за критические значения и инициируют скачкообразный переход в новое устойчивое состояние с меньшей энтропией. После этого цикл "плавное развитие скачок", "эволюция революция", "устойчивость неустойчивость" повторяется.

Противоречие между консервативными и активными частями системы постепенно нарастает и приводит к тому, что даже малые флуктуации приводят к катастрофе. В революционной фазе поведение системы и её отдельных элементов приобретает труднопредсказуемый характер. Такое неадекватное поведение вызывается не только внутренними флуктуациями, силу и направленность которых можно прогнозировать на основании истории развития и современного состояния, но и внешними, имеющими случайный характер. После формирования новой структуры обновлённая система снова вступает на путь плавных изменений, и цикл повторяется.

Таким образом, триггером развития системы являются качественные изменения, вызванные квазидиалектическими противоречиями. Гегель называл импульсом и двигателем процесса развития считал ислючительно внутренние противоречия системы, но игнорировал внешние. Его выводы справедливы для закрытой системы. В случае открытой системы их становится больше, поскольку система адаптируется к среде и вследствие этого становится более отзывчивой к внешним воздействиям. В частности, элементы системы гасят их, вследствие чего обретают большую свободу, вызывая изменения в установившемся порядке, и порождают новую неупорядоченность.

Мнение, что в процессе развития происходит только дивергенция систем, не является аксиомой и может состояться только при соблюдении следующих условий:

 развитие ограничивается исключительно прогрессом и исключает регресс;

 развитие линейно, однонаправленно и поступательно в пределах единственного аттрактора;

 развитие состоит исключительно из одних скачков, без эволюционного этапа.

Исходя из нелинейности процесса развития, его поливариантности и циклической смены эволюционного и бифуркационного этапов, следует признать, что процессы дивергенции и конвергенции являются сторонами одной монеты: первые преобладают на революционной стадии, а вторые на эволюционной.

Для совершения системой революционного перехода необходимо, чтобы ее параметры, как и параметры среды, достигли заданных значений и находились в "области достижимости". При этом, чем сложнее система, тем шире набор состояний, в которых может возникнуть неустойчивость. Когда значения параметров приближаются к критическим значениям, система становится особенно чувствительной к флуктуациям. В этой области достаточно малых воздействий, чтобы она скачком перешла в новое состояние. Следует также отметить, что, согласно закону сохранения вещества, рождение новой системы внутри недостаточно целостностной старой, как и зарождение более высоких, но непосредственно не следующих за ней форм, невозможно без внешнего воздействия.

Энтропия возникает не только внутри самой системы, но и поступает в нее извне. Среда играет большую роль в обмене энтропией. В случае, когда флуктуации, приводящие систему в состояние хаоса, исходят из внешней среды, она становится генератором энтропии. В ином случае, те же самые флуктуации, усиливаясь, могут инициировать самоорганизацию системы, став носителями порядка. Если в среде находятся системы, обмен энтропией с которыми влияет на степень упорядоченности, может наблюдаться отток энтропии из системы. Для этого будет достаточно, чтобы сила флуктуаций системных элементов была недостаточно велика, для того чтобы вызвать точку бифуркации. Даже если эти воздействия воздействуют хаотически, система получает возможность преобразовывать хаос в порядок.

При движении системы к новому качеству, благодаря нелинейным обратным связям, возможны неустойчивые и хаотические стадии. Это, в свою очередь, может привести к существованию нескольких различных равновесных состояний, и, следовательно, различных аттракторов. В момент выбора один из них притягивает систему. Следовательно, при наличии нескольких альтернатив будущее вероятностно неоднозначно, но вместе с тем, оно не может быть любым. В этом случае возникает задача выбора наиболее приемлемого для системы аттрактора. В редких случаях она решается осознанно, но чаще всего124 случайно. В этом случае особую актуальность приобретает оценка вероятности различных вариантов исхода катастрофы.

В точках бифуркации поведение незакрытых систем имеет следующие общие закономерности:

1. Параметры системы в момент катастрофы связаны с изменением управляющего воздействия или вмешательства управляющей подсистемы, а её временная граница катастрофы определяется "принципом максимального промедления": система совершает качественный скачок только тогда, когда у нее нет иного выбора.

2. Существует множество потенциальных траекторий развития системы. Чем более она неравновесна, тем больше у неё имеется потенциальных траекторий и, соответственно, предельных циклов.

3. Вследствие случайного характера воздействия среды точно определить новое состояние невозможно, что связано с тем, что влияние среды носит случайный характер (это не исключает детерминизма между точками бифуркации). Н.Д. Кондратьев полагал, что случайность не может быть поставлена рядом с категорией причинности: её следует отнести к особенностям мышления, чем считать категорией бытия. Поэтому случайными он считал такие иррегулярные события, причины которых при данном состоянии научного знания и его средств не могут быть определены. Даже если момент наступления события непредсказуем, это не означает, что его появлению не предшествовала цепь породивших его причин.

4. Катастрофа изменяет организованность системы, не всегда в сторону ее увеличения. Изменения размерности и сложности системы влияют на количество состояний, при которых может произойти катастрофа, число возможных траекторий развития и, как следствие, аттракторов. На этом основании этого явления сформулирован закон Легасова-Бартелета: чем выше уровень системы, тем более она неустойчива, тем больше расходов требуется на поддержание её устойчивости.

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Скачать книгу

Если нет возможности читать онлайн, скачайте книгу файлом для электронной книжки и читайте офлайн.

fb2.zip txt txt.zip rtf.zip a4.pdf a6.pdf mobi.prc epub ios.epub fb3