A11 = 1/sqrt (2), A12 = 1/sqrt (2)
A21 = 1/sqrt (2), A22 = -1/sqrt (2)
Векторы (ki) и углы (θi):
k1 = (1, 0, 0), θ1 = π/4
k2 = (0, 1, 0), θ2 = π/3
Фазы (αi):
α1 = 0, α2 = π/6
Теперь, подставим эти значения в формулу QM-unique и выполним расчет:
S = (A11 * Bit (k1, α1, θ1)) + (A12 * Bit (k1, α1, θ1))
+ (A21 * Bit (k2, α2, θ2)) + (A22 * Bit (k2, α2, θ2))
Выполним расчет для каждого слагаемого:
Первое слагаемое:
A11 * Bit (k1, α1, θ1)
Вычисляем матрицу Паули σk1 для вектора k1
σk1 = | 1 0 |
| 0 -1 |
Вычисляем оператор вращения Bit (k1, α1, θ1)
Bit (k1, α1, θ1) = exp (-i * α1) * exp (-i * θ1 * σk1)
= exp (-i * 0) * exp (-i * (π/4) * σk1)
= 1 * exp (-i * (π/4) * σk1)
Подставляем значения элементов матрицы A11 и Bit (k1, α1, θ1) для первого слагаемого:
A11 * Bit (k1, α1, θ1) = (1/sqrt (2)) * (1 * exp (-i * (π/4) * σk1))
Аналогично, вычисляем второе, третье и четвертое слагаемые:
Второе слагаемое:
A12 * Bit (k1, α1, θ1)
= (1/sqrt (2)) * (1 * exp (-i * (π/4) * σk1))
Третье слагаемое:
A21 * Bit (k2, α2, θ2)
= (1/sqrt (2)) * (exp (-i * α2) * exp (-i * θ2 * σk2))
= (1/sqrt (2)) * (exp (-i * π/6) * exp (-i * (π/3) * σk2))
Четвертое слагаемое:
A22 * Bit (k2, α2, θ2)
= (-1/sqrt (2)) * (exp (-i * α2) * exp (-i * θ2 * σk2))
= (-1/sqrt (2)) * (exp (-i * π/6) * exp (-i * (π/3) * σk2))
Теперь сложим все слагаемые:
S = (1/sqrt (2)) * (1 * exp (-i * (π/4) * σk1)) + (1/sqrt (2)) * (1 * exp (-i * (π/4) * σk1))
+ (1/sqrt (2)) * (exp (-i * π/6) * exp (-i * (π/3) * σk2)) + (-1/sqrt (2)) * (exp (-i * π/6) * exp (-i * (π/3) * σk2))
Передвинув множители в каждом слагаемом внутрь скобок, можно сократить их согласно правилам экспоненциальной алгебры для матриц (коммутативности и ассоциативности).
Например, для первого и второго слагаемых, где операторы вращения одинаковы, получим:
S = (1/sqrt (2)) * (1 +1) * exp (-i * (π/4) * σk1)
+ (1/sqrt (2)) * (exp (-i * π/6) * exp (-i * (π/3) * σk2))
+ (-1/sqrt (2)) * (exp (-i * π/6) * exp (-i * (π/3) * σk2))
S = (1/sqrt (2)) * 2 * exp (-i * (π/4) * σk1)
+ (1/sqrt (2)) * (exp (-i * π/6) * exp (-i * (π/3) * σk2))
(1/sqrt (2)) * (exp (-i * π/6) * exp (-i * (π/3) * σk2))
S = sqrt (2) * exp (-i * (π/4) * σk1) + (1/sqrt (2)) * (exp (-i * π/6) exp (-i * π/6)) * exp (-i * (π/3) * σk2)
S = sqrt (2) * exp (-i * (π/4) * σk1) +0 * exp (-i * (π/3) * σk2)
S = sqrt (2) * exp (-i * (π/4) * σk1)
Это будет окончательное значение S для данного примера со значениями параметров и спецификой системы, указанными выше.
Обратите внимание, что конкретные значения параметров и специфик системы будут варьироваться в зависимости от конкретной квантовой системы, которую вы рассматриваете.
ИЛЛЮСТРАЦИЯ ПРИМЕРОВ ИСПОЛЬЗОВАНИЯ ФОРМУЛЫ НА РЕАЛЬНЫХ СИСТЕМАХ
Рассмотрим два примера применения формулы QM-unique на реальных системах:
1. Пример: Система одиночного кубита.
В данном примере у нас есть одиночный кубит, представленный двухуровневой системой. Значения параметров и специфики системы:
Размер матрицы Адамара-Валеры (Aij): 2x2.
Матрица Адамара-Валеры (Aij):
A11 = 1/sqrt (2), A12 = 1/sqrt (2)
A21 = 1/sqrt (2), A22 = -1/sqrt (2)
Векторы (ki) и углы (θi):
k1 = (1, 0, 0), θ1 = π/4
k2 = (0, 1, 0), θ2 = π/3
Фазы (αi):
α1 = 0, α2 = π/6
Подставим эти значения в формулу QM-unique и выполним расчет:
S = (1/sqrt (2)) * (1 * exp (-i * (π/4) * σk1)) + (1/sqrt (2)) * (1 * exp (-i * (π/4) * σk1))
+ (1/sqrt (2)) * (exp (-i * π/6) * exp (-i * (π/3) * σk2)) + (-1/sqrt (2)) * (exp (-i * π/6) * exp (-i * (π/3) * σk2))
Полученное значение S будет являться результатом расчета для данной системы одиночного кубита.
2. Пример: Частицы в одномерном квантовом потенциале.
В этом примере рассмотрим систему частиц, движущихся в одномерном квантовом потенциале. Значения параметров и специфики системы:
Размер матрицы Адамара-Валеры (Aij): N x N, где N число базисных состояний частиц.
Матрица Адамара-Валеры (Aij): может быть численно определена или задана аналитически для конкретных случаев.
Векторы (ki) и углы (θi): могут быть связаны с энергетическими уровнями системы и функциями волновой функции частиц.
Фазы (αi): могут быть связаны с начальными условиями системы или дополнительными фазовыми факторами.
Подставим конкретные значения или аналитические выражения в формулу QM-unique для данной системы частиц в одномерном квантовом потенциале. Результат расчета S будет зависеть от конкретных значений и специфики системы в данном примере.
Обратите внимание, что конкретные значения параметров, матриц Адамара-Валеры, векторов, углов и фаз будут зависеть от конкретной системы и ее свойств. Расчет формулы QM-unique требует специфических значений для проведения точных вычислений в различных физических системах.
ОБЪЯСНЕНИЕ ТОГО, КАК ИСПОЛЬЗОВАТЬ ФОРМУЛУ НА ПРАКТИКЕ
Для использования формулы QM-unique на практике, вам потребуется выполнить следующие шаги:
1. Определить конкретную квантовую систему, для которой вы хотите использовать формулу QM-unique. Это может быть система частиц, кубитов, молекул и т. д. Определите размер матрицы Адамара-Валеры (Aij) в соответствии с данными системы.
2. Получите или вычислите матрицу Адамара-Валеры (Aij) для данной системы. В некоторых случаях, для определенных систем, матрица Адамара-Валеры может быть предопределена, например, для системы кубитов размером 2x2. Для более сложных систем или систем с большим числом базисных состояний, может потребоваться численное вычисление матрицы Адамара-Валеры.