Менделеев не разрабатывал периодическую таблицу полностью самостоятельно; он унаследовал и развил знания, которые были переданы многими химиками, посвятившими свою жизнь исследованию материи. В начале 1800-х годов было известно около 30 элементов, и хотя химики знали, что некоторые из этих элементов действуют сходным образом или имеют сходные характеристики, никто не нашел общей, общепринятой закономерности в их поведении.
В 1860 году ученые встретились на одной из первых международных химических конференций. Они решили, что водороду, самому легкому элементу, присвоить вес 1. Вес всех других элементов можно сравнить с весом атома водорода. Это означает, что если элемент в восемь раз тяжелее водорода, его вес равен 8. Концепция систематической меры атомного веса в значительной степени способствовала успеху периодической таблицы Менделеева.
В 1864 году, когда было известно около 50 элементов, британский химик Джон Ньюлендс заметил закономерность, когда он расположил элементы в порядке атомной массы, или веса. Он обнаружил, что свойства элементов, казалось, повторяют каждый восьмой элемент. Он назвал это Законом октав, сравнив его с музыкальными гаммами. Его идеи были отвергнуты, и его коллеги шутили, что с таким же успехом он мог расположить элементы в алфавитном порядке. После кальция (20 в сегодняшней периодической таблице) порядок Ньюлендса нарушился. Он сгруппировал очень нереактивный металл медь в ту же группу, что и высокореактивные элементы литий, натрий и калий. Далеко в России Менделеев не знал о Ньюлендсе.
Как это часто бывает в научных разработках, другой исследователь примерно в то же время пришел к той же теории, что и Менделеев. В 1870 году немецкий химик Юлиус Лотар Мейер опубликовал статью, описывающую ту же организацию элементов, что и у Менделеева. У обоих ученых было схожее образование: они учились в Гейдельберге, Германия, в лаборатории химика Роберта Бунзена. Оба присутствовали в сентябре 1860 года на первом международном химическом конгрессе в Карлсруэ, Германия. На конгрессе обсуждалась необходимость создания общей системы измерения веса различных элементов. И оба химика были преподавателями, работавшими над учебниками для своих студентов.
Справедливо ли было, что Менделеев получил все заслуги за периодическую таблицу, в то время как Мейер оставался неизвестным. Возможно, это произошло потому, что Менделеев, уверенный в своей теории, опубликовал свои открытия первым.
Как бы то ни было, периодическая таблица Менделеева с заполнителями, стратегически сохраненными для предстоящих открытий, обеспечила бесценную основу для классификации строительных блоков материи. Отведенные им места также отражали уверенность в постоянном поиске знаний.
Периодическая таблица не сразу оказала влияние на область химии, хотя ситуация изменилась с открытием первого недостающего элемента, галлия, в 1875 году. Все его качества соответствуют тем, которые Менделеев предвидел для элемента, который он назвал эка-алюминий.
Периодическая таблица Менделеева, каким бы бесценным справочным инструментом она ни была, оставляла много возможностей для открытий и усовершенствований. В 1890-х годах была обнаружена совершенно новая и неожиданная группа элементов: благородные газы. Они были добавлены в таблицу в виде отдельной колонки. Гелий, второй по распространенности элемент во Вселенной, не был найден на Земле до 1895 года. С тех пор было открыто еще около 60 элементов, а другие, возможно, все еще ждут своего открытия.
Под смежной периодической таблицей вы можете увидеть две строки, известные как «лантаноиды» (атомные номера 5771) и «актиноиды» (атомные номера 89103), названные в честь первых, крайних слева членов их групп. По мере того, как ученые находили более тяжелые элементы и начали создавать еще больше, новые элементы были разделены, чтобы сохранить целостную форму таблицы.
По состоянию на 2012 год периодическая таблица содержит в общей сложности 118 элементов. Некоторые элементы были названы в честь ученых, например, атомный номер 99, эйнштейний, в честь Альберта Эйнштейна. Резерфордий, атомный номер 104, назван в честь физика Эрнеста Резерфорда, разработавшего современную модель атома. Атомный номер 101, менделевий, назван в честь составителя периодической таблицы.
Периодическая таблица Менделеева представила новую парадигму, в которой все элементы расположены в логической матрице. Элементы расположены в виде ряда строк, называемых «периодами», так что элементы с аналогичными свойствами отображаются в вертикальных столбцах. Каждая вертикальная колонка называется «группой», или семейством, элементов. Это мгновенно показывает один набор взаимосвязей, если читать сверху вниз, и другой, если читать из стороны в сторону. В некоторых группах есть элементы, обладающие очень похожими свойствами, такими как их внешний вид и поведение. Например, у каждого элемента есть своя точка плавления и кипения, температуры, при которых он переходит из твердого состояния в жидкое и из жидкого в газообразное. Еще одной характеристикой является то, насколько «реактивен» элемент, то есть насколько быстро он соединяется с другими элементами. Ученые распознают, как элемент будет реагировать, исходя из его расположения на столе.
Элементы известны по атомному символу из одной или двух букв. Например, атомный символ золота «Au», название атома «gold», а его атомный номер 79. Чем выше атомный номер, тем считается, что элемент «тяжелее».
Водород равен 1 в периодической таблице, в верхнем левом углу. Его атомный номер равен 1; его ядро содержит один протон и один электрон. Около 98 процентов Вселенной состоит из двух самых легких элементов водорода и гелия.
Описание элемента водород
Бесцветный газ без запаха. У него самая низкая плотность из всех газов. Некоторые рассматривают газообразный водород как чистое топливо будущего, которое образуется из воды и возвращается в воду при окислении. Топливные элементы, работающие на водороде, все чаще рассматриваются как «экологически чистые» источники энергии и в настоящее время используются в некоторых автобусах и автомобилях.
У водорода также есть много других применений. В химической промышленности он используется для производства аммиака для сельскохозяйственных удобрений (процесс Хабера), а также циклогексана и метанола, которые являются промежуточными продуктами в производстве пластмасс и фармацевтических препаратов. Он также используется для удаления серы из топлива в процессе переработки нефти. Большое количество водорода используется для гидрогенизации масел с образованием жиров, например, для производства маргарина.
В стекольной промышленности водород используется в качестве защитной атмосферы для изготовления плоских стеклянных листов. В электронной промышленности он используется в качестве промывочного газа при производстве кремниевых чипов.
Низкая плотность водорода сделала его естественным выбором для одного из первых практических применений наполнения воздушных шаров и дирижаблей. Однако он активно реагирует с кислородом (с образованием воды), и его будущее в качестве наполнителя дирижаблей закончилось, когда загорелся дирижабль «Гинденбург».
Водород является важным элементом для жизни. Он присутствует в воде и почти во всех молекулах живых организмов. Однако сам водород не играет особо активной роли. Он остается связанным с атомами углерода и кислорода, в то время как химия жизни протекает в более активных центрах, включающих, например, кислород, азот и фосфор.