Шаг за шагом. Транзисторы - Рудольф Сворень страница 8.

Шрифт
Фон

Рудольф Сворень - Шаг за шагом. Транзисторы

Рис. 11.Переход электрона из одного атома в другой можно рассматривать как движение положительного заряда в противоположную сторону - движение дырки.

Положительный заряд, двигающийся в полупроводнике в результате коротких перебежек электронов, называют дыркой. Это весьма образное название. В результате коротких перебежек электронов действительно двигаются пустующие на внешней орбите места, двигаются дырки в электронных оболочках атомов. И несмотря на то что первопричиной всего, что происходит, является движение электронов, несмотря на то что при этом сами атомы в твердом теле своих мест не меняют (движение положительных и отрицательных ионов наблюдается лишь в жидких и газообразных веществах, где атомы и молекулы слабо связаны друг с другом и сравнительно легко передвигаются с места на место), мы все же будем считать, что в твердом полупроводнике имеются свободные положительные заряды - подвижные дырки.

Атомы-то ведь все одинаковые - не поймешь, кто кем был и кто кем стал, не поймешь, у кого чей электрон вращается на орбите. (Еще раз просим прочесть примечание на стр. 26, хотя читатель уже, по-видимому, сам знает, в каких случаях нужно обращаться к этому примечанию, и будет это делать без лишних напоминаний.) И поэтому, не пытаясь разобраться в поведении отдельных электронов-перебежчиков, мы будем оценивать лишь конечный результат их деятельности. А таким результатом как раз и является движение положительных зарядов, движение дырок.

Совершенно ясно, что под действием приложенного напряжения в полупроводнике будут упорядоченно двигаться не только электроны-путешественники, но и электроны-перебежчики. Бросаясь из стороны в сторону, они все чаще будут сдвигаться в сторону "плюса" батареи. А это значит, что в хаотическом движении дырок появится некоторая упорядоченность - они медленно и планомерно будут смещаться в сторону "минуса".

Здесь нельзя не вспомнить хорошо известную аналогию. В театре во время спектакля освободилось место в первом ряду. На него сейчас же пересел зритель со второго ряда. На место, освободившееся во втором ряду, пересел зритель из третьего ряда. На его место пересел кто-то из четвертого ряда, и так продолжалось до тех пор, пока свободное место не оказалось в самом последнем ряду. С места на место перебегали люди (электроны-перебежчики), а в результате по залу от первого ряда до последнего переместилось свободное место (дырка).

Теперь, чтобы окончательно не запутаться, давайте вообще забудем о существовании наших электронов-перебежчиков и будем считать, что в полупроводнике электрический ток представляет собой движение двух сортов зарядов - свободных электронов и дырок, что полупроводник обладает электронной и "дырочной" проводимостью.

Подобный прием - исключение из игры электронов-перебежчиков- можно считать вполне оправданным: нельзя же всякий раз начинать свои рассуждения "от печки". Изучая автомобиль, например, вы только один раз подробно познакомитесь с двигателем. А потом, разбираясь в устройстве коробки скоростей или в передаче вращения от двигателя к задним колесам, вы уже не будете начинать с того, как в карбюраторе образуется горючая смесь.

Вас ни в какой мере не должно смущать, что участвующие в электрическом токе свободные электроны и дырки движутся в разные стороны. В твердом теле настолько просторно, что эти движения друг другу не мешают.

При этом каждый из движущихся зарядов, независимо от своих коллег (вы не забываете о примечании на стр. 26?), выполняет свою работу. Поэтому, определяя ток в цепи или мощность на каком-либо ее участке, необходимо учитывать движение и отрицательных, и положительных зарядов. Так, например, если через поперечное сечение проводника (или полупроводника) в каком-либо определенном направлении за одну секунду прошел кулон электронов, а в другую сторону одновременно прошел кулон дырок, то ток в цепи равен 2 а.

В чистом, беспримесном полупроводнике число свободных электронов и число дырок одинаково. Однако для создания транзисторов нужны полупроводниковые материалы с разными типами проводимости - только с электронной или только с дырочной. Это значит, что у одних материалов число свободных электронов должно во много раз превышать число дырок, чтобы в этих полупроводниках возникал в основном электронный ток. А у других материалов, наоборот, дырок должно быть намного больше, чем свободных электронов, и ток в них должен создаваться в основном только дырками. При этом общий заряд куска германия или кремния должен быть равен нулю - в целом в нем не должно быть никаких лишних зарядов.

Вот так задача! Это уже почти то же самое, что залезть в шар и стать там в угол. Как можно, например, добавить в полупроводник свободные положительные заряды, не меняя общего числа зарядов в этом полупроводнике? Каким образом, не нарушая электрического равновесия полупроводника, можно получить в нем избыток тех или иных свободных зарядов? Это можно сделать, добавляя в чистый полупроводник определенные примеси.

Дело в том, что в кристаллах углеродного семейства - в германии и кремнии - действует неписаный закон: "Структура важнее всего". Это значит, что если ради сохранения своей прекрасной алмазоподобной кристаллической решетки атомы должны, принести какие-либо жертвы, то эти жертвы будут принесены: "Структура важнее всего".

Вот что произойдет, например, если в чистый германий во время его плавки добавить атом мышьяка. Такой большой предмет, как атом мышьяка, не может находиться где-то в межатомном пространстве, и поэтому при затвердевании расплава он займет место в кристаллической решетке наравне с атомами самого германия. Но у мышьяка на внешней орбите не четыре электрона, а пять. И этот пятый электрон никак не сможет найти себе места в четкой системе межатомных связей - ведь каждый атом, который входит в решетку алмазного типа, может отдать соседям только четыре электрона. И, подчиняясь закону "Структура важнее всего", пятый электрон уйдет с орбиты в дальние странствия, а сам атом мышьяка превратится в положительный ион (рис. 12).

Рудольф Сворень - Шаг за шагом. Транзисторы

Рис. 12.При введении донорной примеси в полупроводниковом кристалле появляются свободные электроны и неподвижные положительные ионы.

Обратите внимание - мы не называем этот ион дыркой. Вцепившись своими четырьмя электронами в соседей, атом мышьяка не сможет ни взять электрон со стороны, ни отдать его. Этот положительный ион - атом мышьяка - будет неподвижно стоять на месте, не участвуя в создании электрического тока. Вот почему, добавляя в германий или кремний атомы с пятью электронами на внешней орбите, мы создаем в этих полупроводниках дополнительную электронную проводимость, не увеличивая дырочной проводимости и не нарушая общего электрического равновесия кристалла.

Примеси, которые увеличивают электронную проводимость полупроводника, называются донорными примесями. Слово "донор" означает "отдающий" и говорит о том, что примесь как бы добавляет в полупроводник свободные электроны.

Обратный результат можно получить, если добавить в чистый германий (или кремний) атомы с тремя электронами на внешней орбите; например, атомы лития. Для того чтобы не показаться чужаком и не испортить структуры - "Структура важнее всего!" - такой атом поместит к себе на орбиту чужой электрон, естественно, украденный у нейтрального атома германия. А поскольку этот чужой, четвертый электрон будет для лития лишним, то атом лития превратится в неподвижный отрицательный ион. Сам же атом германия, отдавший электрон пришельцу, станет дыркой - этот атом всегда с радостью примет на свободное место в своей внешней орбите любой электрон-перебежчик.

Вывод прост: добавляя в германий или кремний атомы с тремя электронами на внешней орбите, мы создаем в этих полупроводниках дополнительную дырочную проводимость, не увеличивая электронной проводимости. И опять-таки не нарушая общего электрического равновесия (рис. 13).

Рудольф Сворень - Шаг за шагом. Транзисторы

Рис. 13.При введении акцепторной примеси в полупроводниковом кристалле появляются свободные положительные заряды (дырки) и неподвижные отрицательные ионы.

Примеси, которые увеличивают дырочную проводимость полупроводника, называются акцепторными примесями. Слово "акцептор" означает "отбирающий" и говорит о том, что примесь как бы отбирает у полупроводника свободные электроны и основным типом свободных зарядов становятся дырки.

После долгих блужданий по трудным дорогам физики и химии мы получили наконец те самые бесценные материалы, которые нужны для изготовления нашего управляющего прибора, нашего скульптора. Именно эти материалы - полупроводники с электронной или дырочной проводимостью - позволят нам искусственно создать процесс для управления мощными потоками энергии с помощью слабого электрического сигнала. Прибор, в котором будет осуществляться такое управление, как вы уже, конечно, догадались, и есть полупроводниковый триод - транзистор. Но, получив наконец возможность непосредственно познакомиться с главным героем нашей книги - с полупроводниковым триодом, мы в интересах дела ненадолго отложим это знакомство и сначала выясним, как устроен и как работает полупроводниковый диод.

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке