Шаг за шагом. Транзисторы - Рудольф Сворень страница 9.

Шрифт
Фон

Глава II
ОТ ДИОДА ДО ТРИОДА

Рудольф Сворень - Шаг за шагом. Транзисторы

Не подумайте, пожалуйста, что знакомство с полупроводниковым диодом - это отклонение от главного пути. Диод - своего рода составная часть транзистора, и транзистор можно рассматривать как два объединенных в одно целое полупроводниковых диода. Вот почему знакомиться с диодом мы будем достаточно подробно, считая, что при этом мы одновременно знакомимся и с транзистором. Кроме того, диод как самостоятельный элемент весьма часто встречается в электронной аппаратуре, в том числе и в схемах, которые будут описаны в этой книге. Познакомившись с принципом работы и устройством диода, мы рассмотрим несколько практических схем с его участием и тем самым положим начало той части нашего путешествия, для которой нужен уже не только карандаш, но и паяльник.

МАНЕВРЫ НА ГРАНИЦЕ

Имеющихся у нас знаний вполне достаточно, чтобы построить некий условный полупроводниковый диод (рис. 14).

Рудольф Сворень - Шаг за шагом. Транзисторы

Рис. 14.Полупроводниковый диод - это прибор, в котором созданы две зоны с разным типом примесной проводимости: зона р и n.

Возьмем кусок чистого германия (с равным успехом можно взять и кремний, но мы для определенности ограничимся пока одним из этих полупроводников) и с одной стороны введем в него донорную примесь, с другой - акцепторную. Это значит, что в половине кристалла будет преобладать электронная проводимость, в другой - дырочная. По количеству зон с разной проводимостью построенный нами прибор как раз и получил свое название "диод": приставка "ди" означает "два". Название это появилось намного раньше самого полупроводникового диода и относилось к некоторым другим приборам с двумя электродами и двумя выводами от них.

Влияние примесей на электрические свойства полупроводниковых материалов огромно. Так, например, если в германий добавить по весу лишь одну миллионную часть мышьяка, то число свободных электронов в германии увеличится в тысячи раз! Подобным же образом миллионные весовые доли акцепторной примеси - например, лития - в тысячи раз повышают дырочную проводимость полупроводника.

Объясняется столь сильное влияние примесей довольно просто. Дело в том, что своих собственных электронов и дырок в чистом германии немного. Далеко не каждый его атом выпускает на свободу свой электрон - в противном случае этих электронов было бы очень много и вместо полупроводника мы имели бы обычный проводник. В среднем при комнатной температуре на каждый миллиард атомов германия приходится лишь один свободный электрон.

В то же время каждый атом донорной примеси, занявший место в кристаллической решетке, обязательно один из пяти своих внешних электронов выбрасывает в межатомное пространство. Ведь для связи с соседями нужны лишь четыре электрона: как известно, "структура прежде всего".

Теперь посчитаем. Если вес примеси составляет миллионную часть веса германия (мы считаем вес атомов германия и примеси одинаковым и миримся с ошибкой на несколько процентов), то на каждый миллиард атомов германия приходится тысяча атомов примеси, потому что миллионная часть миллиарда и есть тысяча. А это значит, что на каждый миллиард атомов германия теперь приходится один собственный свободный электрон и тысяча свободных электронов, принесенных примесью.

Отсюда следует очень важный вывод: поскольку число собственных свободных электронов равно числу собственных дырок, то благодаря введению примеси электронная проводимость германия окажется примерно в тысячу раз больше дырочной. В таких случаях говорят, что в полупроводнике имеются основные (это те, которых много) и неосновные (те, которых мало) носители электрического заряда. В нашем примере основные носители заряда - это, конечно, электроны, а неосновные- дырки. Если же ввести в германий акцепторную примесь, то свободных электронов окажется несравненно меньше, чем дырок, и именно дырки будут основными носителями электрического заряда, то есть основными свободными зарядами, способными создавать ток (рис. 15).

Рудольф Сворень - Шаг за шагом. Транзисторы

Рис. 15.После введения примеси в полупроводнике оказывается два вида зарядов - примесные (основные) и очень небольшое количество собственных (неосновных) зарядов.

С неосновными носителями, неосновными свободными зарядами мы сейчас поступим так же, как в свое время поступили с электронами-перебежчиками. Для упрощения общей картины мы временно вычеркнем их из своего списка.

Теперь наш полупроводниковый диод выглядит так. В одной его половине имеются только свободные электроны. Эта часть диода называется зоной - n, от слова negativus, то есть отрицательный. В другой части диода есть только носители положительного заряда - дырки. Это зона р - ее название происходит от слова positivus, то есть положительный. Довольно часто буквы n и р вводят в характеристику самого полупроводникового материала и говорят: "германий n-типа", "германий p-типа" или "кремний n-типа", "кремний p-типа". Эти названия указывают, какая примесь - донорная или акцепторная - была введена в кристалл и, таким образом, какая проводимость - электронная или дырочная - является основной в данном кристалле.

В любом полупроводниковом приборе, где есть зоны с разным типом проводимости, граница между этими зонами носит название "pn-переход" (по-русски это звучит так: "пэ-эн-переход"). Такое же название, разумеется, носит пограничная область между зоной р и зоной n в нашем полупроводниковом диоде.

Мы с вами построили полупроводниковый диод. Посмотрим теперь, что он умеет делать.

Включим диод в электрическую цепь, для начала в цепь постоянного тока. Обратите внимание, у нас есть две возможности включения: можно подключить диод зоной р к "плюсу" батареи и зоной n - к "минусу"; а можно наоборот: к "плюсу" подключить зону n и к "минусу" - зону р.

Для лампочки карманного фонаря, например, или для электроплитки совершенно безразлично, в какую сторону через них пойдет ток, был бы лишь ток. Эти приборы одинаково хорошо светят и греют при любом направлении тока. А вот поведение полупроводникового диода прежде всего зависит от направления тока, от того, какая зона диода подключена к "плюсу", а какая к "минусу" батареи. Поэтому мы рассмотрим оба варианта включения.

Начнем с первого.

Итак, "плюс" батареи подключен к зоне р нашего диода, а "минус" - к зоне n. Избыточные электроны с "минуса" батареи хлынули в зону n, и ее собственные электроны под этим могучим натиском двинулись к границе между зонами, двинулись к рn-переходу. С другой стороны, к рn-переходу подошли дырки зоны р, испытывающие электрическое давление "плюса" батареи. (Вы не забываете в подобные минуты обращаться к примечанию на стр. 26?)

А что же происходит на самой границе? Встречаясь, электроны и дырки нейтрализуют друг друга - электроны-путешественники зоны n занимают свободные места на внешних орбитах атомов зоны р.

Тот, кто хочет более детально разобраться в происходящих событиях, должен будет вспомнить о вычеркнутом нами в свое время электроне-перебежчике. В результате все дело сведется к перемещению одних только электронов, и это в действительности имеет место: сами атомы в твердом теле не двигаются. Но для простоты нам все же удобнее рассматривать движение положительных зарядов - дырок, что, как мы уже не раз подчеркивали, совершенно не противоречит истине. При желании можно еще раз привлечь на помощь аналогию со зрительным залом, дополнив его запасным выходом, куда убегают из первого ряда разочарованные зрители, фойе, где толпятся ожидающие свободного места безбилетники, и еще загадочной комнатой (в нашей аналогии она отображает батарею), в которой сбежавшим со спектакля зрителям сообщают кое-что такое, что заставляет их вновь устремиться в зал (рис. 16).

Рудольф Сворень - Шаг за шагом. Транзисторы

Рис. 16. Прямое включение диода; электроны и дырки двигаются к границе рn-перехода, в цепи протекает довольно большой прямой ток - ток основных зарядов.

При выбранном нами первом варианте включения диода в обеих его зонах происходит непрерывное упорядоченное движение зарядов к границе, а значит, во всей цепи идет ток.

Можно сказать об этом и по-другому: при выбранном направлении включения диода он обладает сравнительно небольшим сопротивлением.

А теперь давайте повернем диод (или батарею) на сто восемьдесят градусов и подключим зону р к "минусу" батареи, а зону n - к "плюсу" (рис. 17).

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке