Алексей Владимирович Савватеев - Математика для гуманитариев: живые лекции стр 8.

Шрифт
Фон

Врезка 1. Упражнение для слушателей (необязательное; но ответ полезно прочесть)

Во времена фашистской Германии в ней процветали ученые- шарлатаны. Один из них на полном серьезе утверждал, что всё космическое пространство вокруг Земли заполнено... льдом. (То есть, что мечтать о космических полетах бессмысленно.) Ну, до­пустим, это так и есть. Хм. Рассмотрим тогда три объекта: по­верхность Земли, внутренность Земли и наружная часть Земли, состоящая, хм, изо льда. Как называются эти объекты на языке топологии? Одинаковы ли с точки зрения топологии второй и тре­тий объект?

ОТВЕТ. Первая часть ответа: первый объектдвумерный, типа сферы. Не имеет граничных точек.

Второй объект: 3-мерный, типа шара. Его граничные точкивсе точки поверхности Земли.

Третий объект: 3-мерный, типа шарового слоя. Граничные точ­кивсе точки поверхности Земли.

Вторая часть ответа: второй и третий тип топологически раз­личны, так как шаровой слой существенно отличается от шара. Граничные точки у них тем не менее одинаковы.

Третья часть ответа: не следует говорить, что третий объ­ект «бесконечный по размерам», так как в топологии неважно, каковы размеры объектов. Например, если взять поверхность сфе­ры и выкинуть из нее одну-единственную точку, то по житейским представлениям этот объект «конечный по размерам», в то вре­мя как плоскость «бесконечна». По правилам же топологического исследования, сфера с «выколотой» точкой имеет тот же тополо­гический тип, что и плоскость.

Возьмем и изогнем, изомнем, растянем поверхность шара, но нигде не порвем;, и не склеим, никакие две точки в одну. Мы можем из нее таким образом получить, например, куб (то есть, естествен­но, не сам куб, а его поверхность). Чтобы понять, как это дела­ется, покажем, как из круга, изготовленного из резины, получить квадрат (размеры квадрата неважны). Для этого надо в четырех равноудаленных местах границы круга потянуть наружу резино­вый слой, пока он не примет форму квадрата. В частности, точки границы круга превратились в точки периметра квадрата.

Можно много чего сделать из резиновой камеры сдутого фут­больного мяча. Но есть интуиция, которая подсказывает, что ав­томобильную (или велосипедную) камеру из камеры футбольного мяча сделать будет затруднительно, даже используя те широкие возможности, которые предоставляет нам топология. Куб, элли­псоид (то есть сжатая поверхность сферы), яблоко, арбузпо­жалуйста, а вот бублик из шара не сделаешь, не порвав его, либо не склеив между собой некоторые точки. Согласно сказанному вы­ше, надо различать две разные задачи: 1) Из заполненного шара сделать заполненный бублик и 2) Из поверхности шара сделать поверхность бублика. Первая задача «решена» в подписи к рис. 28.

И Эйлер задался вопросом, а можно ли это утверждение дока­зать? Вроде бы интуитивно оно совершенно понятное. Но матема-

тика ставит задачу перевести очевидное на язык строго доказанно­го. Ведь если мы откроем цивилизацию, которая, например, живет на плоскости, для ее жителей будет не очевиден рассматриваемый нами факт (см. врезку 2). А с номощыо математики мы сможем передать им содержание теоремы. К чему я клоню?

Врезка 2. Эйнштейно топологии

Однажды А. Эйнштейна попросили совсем кратко, на понятном любому языке, пояснить, в чем состоит суть сделанных им откры­тий. Он ответил: все мы, люди, словно маленькие жучки с завя­занными глазами, ползающие но поверхности большого мяча и во­ображающие, что двигаемся но плоскости. Я же первый понял, что мир, в котором я живу, искривлен. Но пока не совсем понятно, как именно он искривлен. (То есть, «по-научному», каков топологиче­ский тип космоса.)

А вот к чему. Несколько лет назад математик Г. Перельман установил похожий факт, но только в пространстве больших из­мерений. Факт про фигуры в многомерном пространстве, которые локально похожи на искривленное трехмерное пространство. Мы живом в трехмерном пространстве, мы четвертого измерения не ви­дим и не чувствуем. Мы можем только рассуждать, что четвертое измерение это время, но объять его взором не можем. Поэто­му мы не можем говорить так спокойно и убежденно, что сделать из шара тор в пространстве больших измерений нельзя. (Ведь в 4­мерном пространстве, как указывалось выше, МОЖНО, не нару­шая правил топологии, превратить незаметным образом человека с сердцем, расположенным слева, в человека с сердцем, располо­женным справа.)

Нам нужен язык, на котором это можно доказать. И вот для то­го, чтобы это можно было доказывать, для того чтобы через много лет Перельман смог доказать «гипотезу Пуанкаре» (после того как ее доказали, она вместо гипотезы Пуанкаре стала называться те­оремой Перельмана или Пуанкаре Перельмана), Эйлер начал большой путь. Он перевел то, что мы с вами считаем очевидным, в точное, железобетонное математическое рассуждение. Как же он это сделал? Он нарисовал на поверхности шара, мяча, арбуза, гло­буса, любого круглого объекта некоторую карту. Иными словами, некий искривленный многогранник (рис. 29).

С точки зрения топологии, любой многогранник это тоже шар. Тетраэдр это шар. куб это шар. октаэдр, любой парал­лелепипед это всё шары. Например, потому что если их выпол­нить из резины и надуть, то получится футбольный мяч. то есть шар. Но до работ Эйлера еще не было «точки зрения топологии», так как не было и самой топологии.

Эйлер «чувствовал», что все эти объекты одинаковые. В чём именно? И как это объяснить остальным людям? В особенности его интересовал вопрос: как доказать, что поверхность шара, по­верхность бублика, поверхность кренделя неодинаковые?8 В ответ на первый вопрос ясность позже внес Анри Пуанкаре (после то­го, как Огюст Коши внес должную ясность в вопрос, что такое «непрерывная функция»). Однако Эйлер сразу обратился ко вто­рой задаче (о доказательстве неодинаковости двух поверхностей) и блестяще решил ее.

Эйлер сделал следующее. Он нанес на поверхность шара мно­гогранник картиночку «стран», причем страны необязательно треугольные (рис. 30). (Если говорить о «странах», то надо по­мнить, что рассматривается «Земной шар», не содержащий морей и океанов.) При этом вся поверхность шара должна быть покрыта многоугольниками.

Главное, чтобы каждая страна была простым плоским объек­том, без дырочек, как круг или квадрат. И далее он сделал то же самое с велосипедной камерой. Нанес такой многогранник, ко­торый является как бы «остовом» каретного колеса (машинных колес в то время еще не было!). При этом вовсе не обязательно, чтобы количество и вид граней, а также количество вершин и ре­бер этого многогранника для шара и для колеса были одинаковы.

Более того, они и не могут быть одинаковыми (как мы увидим ниже).

А потом стал считать у этих многогранников эйлерову харак­теристику: величину ВР + Г.

Число вершин минус число ребер плюс число граней. Как бы мы ни мяли и ни изгибали шар, наши грани«страны» от это­го не меняются. (Но, конечно, нельзя так смять страну, чтобы она вся превратилась в отрезок. Такого даже во время наполеоновских войн не происходило! А если говорить серьезно, то отрезокод­номерный объект, а странадвумерный.) То есть вершины оста­ются вершинами, ребраребрами, а граникакими были (на­пример, изогнутым пятиугольником или треугольником), такими и остались. А значит, величина ВР + Г не меняется. Теперь счи­таем эту величину на колесе (по науке поверхность колеса (или бублика) называется словом «ТОР». А тор, заполненный внутри, называется полнот,орием. Поверхность же шара называется, как известно, сферой). И если сфера может перейти в тор, то картинка на шаре перейдет в картинку на колесе. И, значит, их эйлерова характеристика должна быть одинакова.

Докажем, однако, что у любой фигуры, нарисованной на колесе, эйлерова характеристика равна 0, а у любой фигуры на шареравна 2.

Слушатель: А если бы получилась одна и та же цифра, то что?

А.С.: Мы не смогли бы сделать из этого никакого вывода. Мы бы не смогли сделать вывод, что они одинаковые, но не смогли бы сделать и вывод, что они разные. Но ведь есть и другие подходы, кроме формулы Эйлера. Для более сложных случаев.

Слушатель: Понятно.

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке