Здесь в каждом коэффициенте показаны только четыре цифры, но, очевидно, их может быть любое количество. Также очевидно, что и самих коэффициентов может быть любое число: один коэффициент даёт действительное или вещественное число, два коэффициента дают комплексное число и так далее.
Понятно, что полученный ряд всех возможных чисел является счетным, каждое из исходных чисел имеет свой индивидуальный натуральный порядковый номер. Среди этих чисел обязательно окажутся и число е (2,71828), и π (3,14159), и константа пропорциональности С (0,76422) Ландау Рамануджана, и постоянная тонкой структуры . Счетность ряда обеспечивается использованием метода квадратов, предложенного математиком-филателистом из рассказа об отелях с бесконечным числом номеров [3, с.57] являющегося эквивалентом диагонального процесса Кантора:
Метод мы будем использовать в точности, как в рассказе, поэтому числа из приведенной выше таблицы расположатся друг за другом и получат соответствующие номера примерно в следующей последовательности:
Здесь знак плюс между числами также является простым разделителем, вместо пробела или запятой. Мы приводим только положительные числа, но, как отмечено выше, таблица содержит все вещественные, действительные и прочие числа. Порядок их подсчета соответствует правилу нумерации членов ряда, то есть, каждое число из таблицы получит свой индивидуальный порядковый номер, то есть, будет пронумеровано.
О равномощности отрезка и квадрата
К таким же ошибочным выкладкам следует отнести и известное доказательство Кантора равной мощности точек в прямом отрезке и квадрата со стороной, равной этому отрезку. На самом деле мощность множества точек квадрата на отрезке имеет более высокий порядок, чем мощность множества точек отрезка. То есть, больше в бесконечное, счетное число раз.
Есть наглядный и предельно простой способ показать это: нужно отрезок просто наложить на квадрат. Под отрезком окажутся все тождественные ему точки квадрата. Остальные точки квадрата образуют отдельное бесконечное множество точек, очевидно, большей мощности. Если же отрезок длиннее стороны квадрата, то, казалось бы, можно найти такой квадрат, который будет содержать меньше точек, чем эта линия:
"Разумеется, можно разломать прямую линию на отрезки, длина которых равна стороне квадрата, и после этого каждый отрезок поместить в квадрат так, чтобы они не пересекались друг с другом" [3, с.59].
Это верно, но ломать линию совсем не обязательно. В доказательстве Кантора длина линии равна стороне квадрата. Однако, может быть, разлом линии в цитате предложен для того, чтобы завуалировать, спрятать фактическое опровержение этого доказательства? Действительно, если наложить отрезок на квадрат, то их точки будут отождествлены, причем, вопреки Кантору, у квадрата точек окажется несопоставимо больше, чем у линии. Как бы то ни было, в цитате отчетливо просматривается мысль, что линия содержит меньше точек, чем квадрат. По аналогии с таким разбиением возникло и обратное предположение:
"Но вдруг и квадрат можно как-то разбить на части, а потом эти части положить на прямую, чтобы они не задевали друг друга?" [3, с.59].
Алгебраически с учетом равной метрики, как показано выше, это возможно: вытянуть квадрат в линию. Такой способ совмещения, алгебраический сразу же высвечивает противоречивость решения Кантора. К сожалению, автор цитаты не стал развивать эту идею дальше.
Для сравнения двух множеств точек следует попытаться установить однозначное соответствие между этими точками, то есть, показать, что точки обоих этих множеств можно объединить, скажем, в пары (a, b), такие, что каждый элемент, каждая точка a принадлежит линии, а каждый элемент, точка b квадрату, причем каждый из элементов a и b попал только в одну пару [3, с.59].
Согласно Кантору два бесконечных множества точки линии и квадрата имеют одинаковое количество элементов, если между этими элементами можно установить указанное однозначное соответствие. В математике обычно говорят о мощности множества, подразумевая под нею количество его элементов. Следовательно, отрезок и квадрат, построенный на нем, по Кантору имеют одинаковую мощность. Для доказательства этого он использует следующий метод. В системе координат x0y простроен квадрат ABCD, причем точка A совпала с началом координат, а точка B лежит на оси x. Не всякий способ позволяет установить взаимное однозначное соответствие между точками квадрата и отрезка: