Правила счета элементов бесконечного множества - Петр Васильевич Путенихин страница 16.

Шрифт
Фон

"Проектирование точек квадрата на отрезок АВ здесь не помогает, ведь при проектировании в одну точку отрезка перейдет бесконечное множество точек квадрата (например, в точку А все точки отрезка DA)" [3, с.77].

Однако такое обоснование нас, разумеется, устроить не может, поскольку это решение верное, но оно все-таки отбрасывается. Координаты каждой точки квадрата можно представить в мнемоническом виде:



В этих записях каждый символ α, β представляет собой какую-либо цифру из 09. То есть, x и y это просто два дробных числа, меньшие единицы. Здесь следует, кстати, выразить недоумение по поводу отождествления чисел вида 0,50000 и 0,499999....

"например, 0,500000 и 0,49999999 это одно и то же число. Для определенности будем пользоваться записью с нулями" [3, с.73].

В частности, вопрос: отождествляются только такие числа? А, например, числа 0,550000 и 0,549999 не отождествляются по такому же принципу? Это правило, собственно говоря, не выдумка. Например, его использует офисная программа MS Excel, правда, с противоположной "определенностью". Там любое целое число в одном из представлений так и записывается: с множеством девяток в конце. Но в нашем случае мы рассматриваем числа в их абсолютном смысле. Поэтому число 0,50001 и число 0,5, число 0,4999999 или даже 0,49999998 это совершенно разные числа. Если же вводить указанное правило (округление), то следовало бы и здесь дать веские обоснования, почему такой участи избежали числа 0,549999 или 0,22229999..... Чем они кардинально отличаются? Если же правило распространить и на них, то сразу же образуется счетная бесконечность чисел, отброшенных в результате безосновательного округления.

Итак, после тривиального преобразования координат точки квадрата в мнемоническую запись, с ними производится манипуляция, которая также не имеет веско аргументированного, рационального смысла. Перетасовыванием знаков двух чисел формируется новое число:



Обратим внимание на следующее интересное замечание и на приведенный далее способ отождествления:

"для простоты мы не берем точки квадрата, лежащие на его сторонах, а берем лишь внутренние точки Нам надо теперь найти точку Q отрезка АВ, соответствующего точке Т" [3, с.78].

Для "простоты"  это, прямо скажем,  лукавство. Этим упрощением отбрасывается неразрешимое противоречие совпадения линии и стороны квадрата.

Точка T это точка в квадрате с указанными координатами x и y. Координата точки отрезка выбирается по принципу Q = z. Далее делается ожидаемый вывод: точке T квадрата поставлена в соответствие точка Q отрезка [0, 1]. Следовательно, всем различным точкам квадрата соответствуют разные точки отрезка и тем самым установлено взаимно однозначное соответствие между точками квадрата и точками отрезка. Из этого также делается вывод, что множество точек квадрата имеет такую же мощность (количество), что и множество точек отрезка (их количество).

Такие выводы противоречат не только здравому смыслу, но и логике, поскольку налицо подмена понятий. Сначала обратим внимание на то, что же отождествляется. А отождествляется координата точки отрезка и некоторое комбинационное число, которое вообще-то координатой не является. Действительно, координатой чего мы можем признать сборку число z? Какое отношение эта комбинация знаков имеет к координатам x, y точки квадрата? Координаты это два числа (так сказать, две штуки), а z это одно число (одна штука). По существу, число z является для координат x, y своеобразным индексом. Иными словами, мы здесь отождествили не две точки, а точку и некий индекс. Но индекс чего? Квадрат это плоская фигура, следовательно, каждая его часть изначально должна рассматриваться как такая же плоская фигура, фигура с площадью. И мы фактически отождествили не две точки, а точку и площадку, бесконечно малый квадрат. Размеры точек на линии и точек, площадок на квадрате разные, хотя и те и те бесконечно малы.

Конечно, для отождествления это не является противоречием. Мы можем, например, отождествить 10 яблок и 10 уток. Или 200 кресел в кинотеатре и 200 зрителей. Но при этом следует помнить, что равны не они сами по себе, а их количества. В доказательстве Кантора, вроде бы, так и говорится, что равны мощности, равны количества. Однако преподносится это так, что создается впечатление, будто эти сравниваемые множества равны не только по своим количествам, мощности, но и равны буквально точка на линии тождественно равна точке на квадрате. При таком подходе можно отождествить любые бесконечности, просто отбросив их качество и оставив лишь безликое количество. Все зависит только от искусства отождествителя. Приведём простой пример.

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке

Похожие книги