Нейросетевая торговая система. Пошаговая разработка для платформы META TRADER 4 в среде MATLAB. Сокращенное издание - Дибров Андрей страница 2.

Шрифт
Фон

Первый вариант, естественно мы отбрасываем сразу. А вот второй и третий для торговли подходят. Однако второй вариант – вариант как бы заглядывания в будущее. Утрировано этот вариант торговли заключается в том, что мы получаем сигнал от нейросети в определенный момент времени – например по закрытию дня с прогнозом как закроется следующий день. Реализовать его для чисто механической торговли на данном этапе сложно. Ну, а если представить, что им получит возможность воспользоваться большинство торговцев – то он сразу же потеряет свою актуальность. Смысл третьего варианта, заключается в том, что мы отслеживаем отклик нейросети на протяжении торговой сессии и покупаем либо продаем его интерпретируя. И здесь нам надо понять основное. Какой из вариантов мы сможем реализовать зависит от того как мы будем обучать нейросеть. И согласитесь, что третий вариант реализовать все-таки легче. Если во втором – мы будем использовать, какую либо информацию с прицелом на получение результата на следующий день – его закрытия (день выбран как пример, естественно может быть какой либо другой период), то в третьем варианте мы используем информацию, пришедшую за шаг до принятия решения – куда двинется цена в этот момент времени.

Нейросетевая торговая система. Пошаговая разработка для платформы META TRADER 4 в среде MATLAB. Сокращенное издание
читать Нейросетевая торговая система. Пошаговая разработка для платформы META TRADER 4 в среде MATLAB. Сокращенное издание
Дибров Андрей
Книга для новичков и продвинутых трейдеров, желающих раздвинуть горизонты традиционного анализа рынка. Сокращенное описание пошаговой инструкции для разработки системы ведения автоматической торговли на финансовых рынках в терминале MT4, основанной на анализе рыночной ситуации нейронными сетями MATL

Ваша оценка очень важна

0
Шрифт
Фон

Помогите Вашим друзьям узнать о библиотеке