Скачать книгу
Если нет возможности читать онлайн, скачайте книгу Физика в быту файлом для электронной книжки и читайте офлайн.
Алла Борисовна КазанцеваФизика в быту
Предисловие автора
Эта книга и о физике, и о нашей жизни в современном мире.
Для большинства людей физика ассоциируется со школой: это трудный и малопонятный предмет, имеющий небольшое отношение к повседневной жизни. Понятно, что все современные технологии так или иначе базируются на физических законах, но надо ли каждому пользователю знать и понимать эти законы? И всё же физика имеет гораздо большее отношение к повседневной жизни, чем это кажется на первый взгляд. В этой книге мы хотим рассказать о некоторых физических явлениях и законах, которые позволят вам лучше понимать и оценивать риски обитания в современном мире, особенно в больших городах. Как вы полагаете, к примеру: что причиняет бóльший вред нашему здоровьюкурение, городские шумы или электромагнитное загрязнение? А что опаснеежить возле атомной электростанции или возле тепловой? Эти и многие другие животрепещущие вопросы будут затронуты в книге.
Она состоит из четырёх частей. В первой части обсуждается звуковая составляющая нашей жизни. Мы расскажем, что такое звук и в чём отличие музыки от шума, поговорим о звуках полезных и вредных, об опасности «неслышных» звуков; выясним, можно ли сделать голос красивее и в чём тайна целительного воздействия музыки на человека. Вы узнаете также об особенностях слухового восприятия и о причинах преждевременного его повреждения.
Во второй части речь пойдёт об источниках света. Какие опасности для здоровья таят в себе такие, казалось бы, безобидные устройства, как осветительные приборы? Как их грамотно выбирать? Чтобы разобраться в этом, мы предварительно вооружимся всеми необходимыми сведениями о свете и о нашей зрительной системе.
Третья часть книги посвящена электромагнитной обстановке больших городов. Вы узнаете о нашей удивительной связи с естественными электромагнитными полями Земли, которые в современном мире почти полностью заглушены гораздо более сильными техногенными полями. Как это может отразиться на нашем здоровье, и как минимизировать риски?
Наконец в четвёртой части мы поговорим о том, что такое радиация, где мы можем «схватить дозу», чего надо бояться, а чего нет. Мы постараемся разобраться с физическими основами всех этих явлений, чтобы вы могли осознанно выстраивать свой быт в современных условиях.
Автор книги более тридцати лет преподаёт физику самым разным слушателямкак физикам, так и не физикам, а также читает научно-популярные лекции. Автор надеется, что изложенный материал будет понятен и интересен любознательному читателю, который хоть «краешком уха» прослушал курс физики в школе или только знакомится с этой замечательной наукой. Студенты-физики и учителя также найдут в книге что-то полезное для себя.
Часть 1Мир звуков
Мы погружены в звуковую атмосферу: голоса природы, городские шумы, речь, музыка. Что такое звуки, как они рождаются и почему такие разные: высокие и низкие, приятные и неприятные, иногда шумы, а иногда музыка? Какая может быть польза от звуков для нашего здоровья и самочувствия и могут ли они приносить вред? Постепенно мы ответим на все эти вопросы. Природу звука и проблемы, связанные с его возникновением, распространением и восприятием человеком, изучает раздел физикиакустика. Сначала мы немного поговорим о физике: как звуковые волны возникают, распространяются и воспринимаются человеком, а затем обсудим их влияние на самочувствие и здоровье.
Глава 1Физика звуков
Что такое звук?
Мы слышим звук, когда что-то заставляет вибрировать, то есть колебаться, барабанные перепонки в наших ушах. Причём частота вибрации должна лежать в определённых пределах: не менее 16 колебаний в секунду (то есть 16 герц) и не более 20 тысяч колебаний в секунду (20 тысяч герц). Эту область частот называют звуковым диапазоном. Колебания барабанной перепонки с частотой менее 16 герц и более 20 тысяч герц мы не воспринимаем как звук, то есть не слышим. Сразу оговоримся: таков звуковой диапазон для молодых людей. Но уже с 1520 лет этот диапазон начинает заметно сужаться, особенно со стороны высоких частот. Так что к 35 годам люди перестают слышать звуки с частотой более 15 тысяч герц, а к 50 годам верхний предел снижается, как правило, до 12 тысяч герц (у многих мужчин даже до 67 тысяч герц). Причём для того, чтобы предельно низкие и предельно высокие звуки были услышаны, они должны быть очень сильными, то есть вызывающими гораздо более интенсивные колебания барабанных перепонок, чем звуки середины звукового диапазона.
Колебанияэто периодически повторяющиеся движения, они характеризуются частотойчислом колебаний в секунду. Частота измеряется в герцах (сокращённо Гц): 1 Гцэто одно колебание в секунду.
Одни звуки мы воспринимаем как низкие (басовые), другиекак высокие, тонкие. Музыканты называют это высотой тона. Именно частота колебаний определяет высоту тона: большая частота создаёт ощущение высокого звука, малая частотанизкого.
Итак, ощущение звука связано с вибрацией барабанных перепонок. Но что её вызывает? Обычно нас окружает воздух. Вибрации воздуха, его периодические сгущения и разрежениявот что заставляет так же периодически двигаться наши барабанные перепонки. А что порождает вибрации воздуха? Периодические или непериодические изменения плотности окружающей среды создаёт источник звука.
Этим источником может быть любое тело: можно ущипнуть струну или провести по ней смычком, постучать по чему-нибудь, поскрести, потрясти Нужно, чтобы поверхность тела-источника начала колебаться, колыхаться, дрожать. Положите ладонь на горло во время пения или потрогайте крышку звучащего рояля, и вы почувствуете вибрацию.
Вибрирующая поверхность источника изменяет плотность прилегающего слоя окружающей среды: воздуха или воды, а иногда и твёрдого тела (копыта коня стучат по земле). Все эти средыгазообразная, жидкая, твёрдаяявляются упругими, то есть изменения плотности и давления, возникшие в одном месте, передаются от слоя к слою, распространяясь всё дальше от источника, подобно кругам на воде от брошенного камня. Такая передача объясняется взаимодействием молекул среды друг с другом. В газе это взаимодействие сводится к столкновениям молекул: молекулы из места уплотнения расталкивают молекулы в прилегающих слоях, заставляя их так же толкать своих соседей. В итоге колебания плотности и давления передаются от слоя к слою с определённой скоростьюскоростью звука. В газах эта скорость составляет сотни метров в секунду (в воздухе при комнатной температуре она равна 340 м/с). Обратите внимание: при распространении звуковой волны сами массы воздуха не перемещаются, каждая частичка среды лишь колеблется туда-сюда и заставляет это делать соседние частицы.
В жидких и твёрдых средах молекулы «чувствуют» друг друга на расстоянии электрическими полями: стоит одному слою молекул чуть сместиться от своего положения равновесия, как соседние молекулы почувствуют это и тоже придут в движениеначнут колебаться около своих равновесных положений, воздействуя в свою очередь на следующие слои. Поэтому звуковые волны в плотных средах распространяются быстрее, чем в газах. Так, в воде скорость звука около 1,5 км/с, а в твёрдых телах и того больше.
Звуковая волнаэто процесс распространения колебаний плотности и давления в упругой среде (воздухе, воде и любом твёрдом веществе).
И вот звуковая волна доходит до барабанной перепонки уха, вызывая её движения. От перепонки колебания через систему слуховых косточек передаются улитке внутреннего уха (мы ещё поговорим о ней в своё время), а от неё уже в виде электрических импульсов по слуховому нерву поступают в нужную зону мозга, который обрабатывает полученный сигнал. И мы слышим звук. Так что звукявление не только физическое, но и физиологическое.
Ощущение звука возникает в результате воздействия колебаний давления воздуха (или воды, если человек находится в воде) на барабанную перепонку уха.
Итак, чтобы мы услышали звук, необходимы три составляющие:
1. Источник звука, создающий периодические или непериодические изменения плотности частиц окружающей среды.